Loading...
Search for: particle-swarm-optimization-algorithm
0.008 seconds
Total 49 records

    Developing a multi-objective multi-layer model for optimal design of residential complex energy systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 138 , 2022 ; 01420615 (ISSN) Davoudi, M ; Jooshaki, M ; Moeini Aghtaie, M ; Hossein Barmayoon, M ; Aien, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Optimal planning of residential complex energy systems requires thorough mathematical modelling to address the interconnections between all the energy installations from the largest ones, shared by all the residents, to the smallest ones in each distinct unit. Besides, conflicting desires of investors and residents in various aspects such as reliability index make this problem more challenging. In response, this paper presents a thorough framework to obtain the optimum design and operation of a residential complex energy system from scratch. To address the appropriate interconnection between various components of such an energy system, a multi-layer energy hub structure is proposed. Besides,... 

    A modified approach for residential load scheduling using smart meters

    , Article IEEE PES Innovative Smart Grid Technologies Conference Europe ; 2012 ; 9781467325974 (ISBN) Bahrami, Sh ; Parniani, M ; Vafaeimehr, A ; Sharif University of Technology
    2012
    Abstract
    Implementation of various incentive-based demand response strategies has great potential to decrease peak load growth and customer electricity bill cost. Using advanced metering and automatic demand management makes it possible to optimize energy consumption, to reduce grid loss, and to release generation capacities for the sake of providing sustainable electricity supply. Executing an incentive-based program is a simple way for customers to monitor and manage their energy consumption, and therefore, to reduce their electricity bill. With these objectives, this paper examines the previously suggested load scheduling programs and proposes a new practical one for residential energy management.... 

    Geometrical optimization of half toroidal continuously variable transmission using particle swarm optimization

    , Article Scientia Iranica ; Volume 18, Issue 5 , 2011 , Pages 1126-1132 ; 10263098 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Boroushaki, M ; Ekhtiari, M ; Dehghani, M ; Sharif University of Technology
    Abstract
    The objective of this research is geometrical optimization of half toroidal Continuously Variable Transmission (CVT) in order to achieve high power transmission efficiency. The dynamic analysis of CVT is implemented and contact between the disk and the roller is modeled viaelastohydrodynamic (EHL) lubrication principles. Computer model is created using geometrical, thermal and kinetic parameters to determine the efficiency of CVT. Results are compared by other models to confirm the model validity. Geometrical parameters are obtained by means of Particle Swarm Optimization (PSO) algorithm, while the optimization objective is to maximize the power transmission efficiency. Optimization was... 

    Bi-objective optimization of a three-echelon multi-server supply-chain problem in congested systems: Modeling and solution

    , Article Computers and Industrial Engineering ; Volume 99 , 2016 , Pages 41-62 ; 03608352 (ISSN) Maghsoudlou, H ; Rashidi Kahag, M ; Akhavan Niakib. S. T ; Pourvaziri, H ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A novel bi-objective three-echelon supply chain problem is formulated in this paper in which cross-dock facilities to transport the products are modeled as an M/M/m queuing system. The proposed model is validated using the epsilon constraint method when applied to solve some small-size problems. Since the problem belongs to the class of NP-hard and that it is of a bi-objective type, a multi-objective particle swarm optimization (MOPSO) algorithm with a new solution structure that satisfies all of the constraints is developed to find Pareto solutions. As there is no benchmark available in literature, three other multi-objective meta-heuristic algorithms called non-dominated ranking genetic... 

    Design of a fractional order PID controller for an AVR using particle swarm optimization

    , Article Control Engineering Practice ; Volume 17, Issue 12 , 2009 , Pages 1380-1387 ; 09670661 (ISSN) Zamani, M ; Karimi Ghartemani, M ; Sadati, N ; Parniani, M ; Sharif University of Technology
    Abstract
    Application of fractional order PID (FOPID) controller to an automatic voltage regulator (AVR) is presented and studied in this paper. An FOPID is a PID whose derivative and integral orders are fractional numbers rather than integers. Design stage of such a controller consists of determining five parameters. This paper employs particle swarm optimization (PSO) algorithm to carry out the aforementioned design procedure. PSO is an advanced search procedure that has proved to have very high efficiency. A novel cost function is defined to facilitate the control strategy over both the time-domain and the frequency-domain specifications. Comparisons are made with a PID controller and it is shown... 

    Modification of DFIG's active power control loop for speed control enhancement and inertial frequency response

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 4 , 2017 , Pages 1772-1782 ; 19493029 (ISSN) Ashouri Zadeh, A ; Toulabi, M ; Bahrami, S ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    This paper proposes a fuzzy-based speed controller for the doubly fed induction generator (DFIG)-based wind turbines with the rotor speed and wind speed inputs. The controller parameters are optimized using the particle swarm optimization algorithm. To accelerate tracking the maximum power point trajectory, the conventional controller is augmented with a feed-forward compensator, which uses the wind speed input and includes a high-pass filter. The proposed combined speed controller is robust against wind measurement errors and as the accuracy of anemometers increases the speed regulation tends toward the ideal controller. The cutoff frequency of the applied filter is determined considering a... 

    Experimental and theoretical study of crude oil pretreatment using low-frequency ultrasonic waves

    , Article Ultrasonics Sonochemistry ; Volume 48 , 2018 , Pages 383-395 ; 13504177 (ISSN) Khajehesamedini, A ; Sadatshojaie, A ; Parvasi, P ; Rahimpour, M. R ; Naserimojarad, M. M ; Sharif University of Technology
    Abstract
    In this work, an ultrasound experimental setup was designed to investigate the feasibility of using low-frequency ultrasonic waves as a substitute to reduce the consumption of chemical demulsifiers in the pretreatment of crude oil. The experiments were planned to study the effects of irradiation time, ultrasonic field intensity and initial water content on the efficiency of separation. The results of experiments showed that by selecting a proper irradiation time and field intensity, it is possible to decrease the usage of demulsifiers by 50%. Moreover, a population balance model was proposed to explicate the experimental data. A hybrid coalescence model was developed to determine the... 

    Impedance control and gain tuning of flexible base moving manipulators using PSO method

    , Article 2008 IEEE International Conference on Information and Automation, ICIA 2008, Zhangjiajie, Hunan, 20 June 2008 through 23 June 2008 ; 2008 , Pages 458-463 ; 9781424421848 (ISBN) Salehi, M ; Vossoughi, G. R ; Vajedi, M ; Brooshaki, M ; Sharif University of Technology
    2008
    Abstract
    New gains tuning and impedance control method were addressed for flexible base moving manipulators. Slow and fast dynamics of robot are decoupled using singular perturbation method. Then, using sliding mode control method, an impedance control law was derived for the slow dynamics. Combined control law was proposed comprising the impedance control law and a feedback control law for the fast dynamics. As fist time, we proposed a new online particle swarm optimization algorithm for gain tuning of impedance control at the contact moments of end effector and unknown environments. This proposed Sliding Mode Impedance Controller and online PSO were simulated for a Flexible Base Moving Manipulator.... 

    Design of an H∞, PID controller using particle swarm optimization

    , Article International Journal of Control, Automation and Systems ; Volume 7, Issue 2 , 2009 , Pages 273-280 ; 15986446 (ISSN) Zamani, M ; Sadati, N ; Ghartemani, M. K ; Sharif University of Technology
    2009
    Abstract
    This paper proposes a novel method to designing an H∞ PID controller with robust stability and disturbance attenuation. This method uses particle swarm optimization algorithm to minimize a cost function subject to-norm to design robust performance PID controller. We propose two cost functions to design of a multiple-input, multiple-output (MIMO) and single-input, single-output (SISO) robust performance PID controller. We apply this method to a SISO flexible-link manipulator and a MIMO super maneuverable F18/HARV fighter aircraft system as two challenging examples to illustrate the design procedure and to verify performance of the proposed PID controller design methodology. It is shown with...