Loading...
Search for: performance-assessment
0.012 seconds
Total 236 records

    Performance assessment of thermophotovoltaic application in steel industry

    , Article Solar Energy Materials and Solar Cells ; Volume 157 , 2016 , Pages 55-64 ; 09270248 (ISSN) Shoaei, E ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The potential for using Thermophotovoltaic (1TPV) generators as an alternative for recovering energy losses in steel production industry is assessed. A mathematical model for the assessment of the performance of TPV application in the iron and steel industry has been developed. In order to support the mathematical model, a sample TPV apparatus in laboratory scale based on an IR emitter has been designed and assembled. The key modeling parameters of TPV generator include: the open circuit voltage, the short circuit current density and fill factor of the TPV cell. These parameters have been considered in the model as functions of several variables such as: the emitter (hot steel slab)... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Fuzzy hierarchical queueing models for the location set covering problem in congested systems

    , Article Scientia Iranica ; Volume 15, Issue 3 , 2008 , Pages 378-388 ; 10263098 (ISSN) Shavandi, H ; Mahlooji, H ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    In hierarchical service networks, facilities at different levels provide different types of service. For example, in health care systems, general centers provide low-level services, such as primary health care, while specialized hospitals provide high-level services. Because of the demand congestion at service networks, the location of servers and their allocation of demand nodes can have a strong impact on the length of the queue at each server, as well as on the response time to service calls. This study attempts to develop hierarchical location-allocation models for congested systems by employing a queueing theory in a fuzzy framework. The parameters of each model are approximately... 

    Comparison of static pushover analysis and IDA-based probabilistic methods for assessing the seismic performance factors of diagrid structures

    , Article Scientia Iranica ; Volume 28, Issue 1A , 2021 , Pages 124-137 ; 10263098 (ISSN) Seyedkazemi, A ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    The present study aims to reliably quantify the seismic response parameters of steel diagrid structural systems. To this end, in addition to the conventional Static Pushover Analysis (SPA), Dynamic Pushover Analysis (DPA) based on Incremental Dynamic Analysis (IDA) technique was taken into account. FEMA P-695 recommends a methodology for establishing Seismic Performance Factors (SPFs). The objective of the present study was to propose a simpler framework for estimating and validating SPFs while applying the concepts of FEMA P-695 guideline. The results showed that the R factors obtained through SPA procedure for steel diagrid systems were conservative and the IDAbased probabilistic method... 

    Control of car-like (wheeled) multi robots for following and hunting a moving target

    , Article Scientia Iranica ; Volume 18, Issue 4 B , August , 2011 , Pages 950-965 ; 10263098 (ISSN) Sayyaadi, H ; Kouhi, H ; Salarieh, H ; Sharif University of Technology
    2011
    Abstract
    The main purpose of this paper is to design a decentralized controller for some car-like (wheeled) multi robots to follow and hunt a moving target. Considering geometric dimensions, mass and moment of inertia, robots are very similar to actual cars in which the outputs of the controller are steering and driving wheel torques. All robots are equipped with range and bearing sensors along with antenna, to communicate radio wave signals. A Kalman filter is implemented to estimate relative position, state variables of the target and state variables of other robots. The controller is designed to carry out the group maneuver of the system, based on the system dynamics analysis of inertial agents,... 

    Effects of air reservoir volume and connecting pipes' length and diameter on the air spring behavior in rail-vehicles

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 5 , 2010 , Pages 499-508 ; 10286284 (ISSN) Sayyaadi, H ; Shokouhi, N ; Sharif University of Technology
    Abstract
    The secondary suspension of most new EMU and DMU rail vehicles is equipped with air springs, to offer a good ride comfort to passengers. Air springs are a very important isolating component, which guarantees good ride comfort during the trip. In most rail-vehicle models developed by researchers, the thermo-dynamical effects of air springs in the rail-vehicle dynamics are not considered and secondary suspension is modeled by simple springs and dampers. As the performance of suspension components, especially for air springs, have significant effects on railvehicle dynamics and the ride comfort of passengers, a complete nonlinear thermo-dynamical air spring model, which is a combination of two... 

    New dynamics model for rail vehicles and optimizing air suspension parameters using GA

    , Article Scientia Iranica ; Volume 16, Issue 6 B , 2009 , Pages 496-512 ; 10263098 (ISSN) Sayyaadi, H ; Shokouhi, N ; Sharif University of Technology
    2009
    Abstract
    In this paper, a complete four axle rail vehicle model with 70 Degrees Of Freedom (DOFs) is addressed, which includes; a carbody, two bogies and four axles. In order to include track irregularity effects on vehicle behavior, a simplified track model for a straight line is proposed. As the performance of the suspension components, especially for air springs, has significant effects on rail-vehicle dynamics and the ride comfort of passengers, a complete nonlinear thermo-dynamical air spring model which is a combination of two different models is introduced and then implemented in the complete rail-vehicle dynamics. By implementing the Presthus formulation [1], the thermo-dynamical parameters... 

    Modeling and intelligent control of a robotic gas metal arc welding system

    , Article Scientia Iranica ; Volume 15, Issue 1 , 2008 , Pages 75-93 ; 10263098 (ISSN) Sayyaadi, H ; Eftekharian, A. A ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Welding is an important manufacturing process that can be automated and optimized. This paper focuses on the development of a robotic arc welding system, wherein a three-degree-of-freedom Selective Compliance Assembly Robot Arm (SCARA) is interfaced to a Gas Metal Arc Welding (GMAW) process. The entire system is composed of a robot linked to a GMAW system. Set points are derived using the desired mass and heat input, along with the weld speed. The stick-out and the current of the welding process are controlled using an Adaptive Neural Network Controller (ANNC). The trajectory of the robot or the weld profile is also controlled by implementing a Mixed Fuzzy-GA Controller (MFGAC) on a... 

    Experimental and numerical investigation of squat submarines hydrodynamic performances

    , Article Ocean Engineering ; Volume 266 , 2022 ; 00298018 (ISSN) Sarraf, S ; Abbaspour, M ; Dolatshahi, K. M ; Sarraf, S ; Sani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper empirically examines the hydrodynamic performances of squat submarines under the resistance and wave tests beside numerical investigation of pressure drag reduction techniques. Despite vast information about the operation of the streamlined fluid vessels, there is not much information about the geometries and hydrodynamic behaviors of squat vessels with L/D ratios below four. This study experimentally investigates the impacts of various relative depths and flow inclinations, intending to find drag, heave, and sway forces at the velocities of 0.5, 1.0, 1.5, 2.0, and 2.5-m/s. A one-tenth scaled model of a squat submarine is examined under the resistance and wave train scenarios as... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method... 

    CFD simulation of thermal performance of hybrid oil-Cu-Al2O3 nanofluid flowing through the porous receiver tube inside a finned parabolic trough solar collector

    , Article Sustainable Energy Technologies and Assessments ; Volume 50 , 2022 ; 22131388 (ISSN) Samiezadeh, S ; Khodaverdian, R ; Doranehgard, M. H ; Chehrmonavari, H ; Xiong, Q ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, we perform numerical simulations to investigate the thermal and flow characteristics of a parabolic trough solar collector equipped with a porous receiver tube and internal longitudinal fins. The heat transfer medium is a synthetic oil-Cu-Al2O3 hybrid nanofluid. We examine the thermal characteristics of the nanofluid in response to variations in several system parameters. We find that at Reynolds numbers between 5 × 103 and 5 × 105, increasing the volume fraction of Cu nanoparticles can increase the temperature gain at the exit of the receiver tube by 6.4%. Furthermore, the temperature gradient in the cross-section of the collector increases as the direct normal solar... 

    Impact of stripe unit size on performance and endurance of SSD-based RAID arrays

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1978-1998 ; 10263098 (ISSN) Salmasi, F. R ; Asadi, H ; GhasemiGol, M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Over the past decades, Redundant Array of Independent Disks (RAIDs) have been configured based on mechanical characteristics of Hard Disk Drives (HDDs). With the advent of Solid-State Drives (SSDs), configurations such as stripe unit size can be far from the characteristics of SSDs. In this paper, we investigate the effect of stripe unit size on the endurance and the overall I/O performance of an SSD-based RAID array and compare the optimal stripe unit size with the suggested stripe unit sizes for HDD-based RAID. To this end, we first examine the number of extra page reads and writes imposed by write requests, and then observe the corresponding impact on the overall throughput and the... 

    A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems

    , Article Renewable Energy ; Volume 135 , 2019 , Pages 437-449 ; 09601481 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Dust deposition on the surface of solar systems is one of the main parameters that significantly affects the performance of such systems. In this study, the effect of dust deposition density on the performance of photovoltaic modules (PV) and photovoltaic-thermal systems (PVT) is numerically investigated. Accordingly, all layers of a monocrystalline silicon PV module for both systems are simulated. Moreover, the effect of various system parameters on the performance of both clean and dusty PV module and PVT system are studied. The studied parameters included: solar radiation intensity, ambient temperature, coolant inlet temperature, and coolant inlet velocity. The obtained results indicate... 

    Computer modeling of the operating room ventilation performance in connection with surgical site infection

    , Article Scientia Iranica ; Volume 27, Issue 2 , 2020 , Pages 704-714 Sajadi, B ; Saidi, M. H ; Ahmadi, G ; Sharif University of Technology
    Sharif University of Technology  2020
    Abstract
    The primary source of surgical site infection is the deposition of flakes released from the exposed skin of surgical staff or the patient on the exposed surgical wound. In this study, a computational model for simulating air ow and thermal conditions in an operating room is developed, and transport and deposition of particulate contaminants near the wound are analyzed. The results show the formation of a thermal plume over the wound tissue, which is typically at a higher temperature than the surrounding. The thermal plume protects the wound from the deposition of contaminants. In addition, the computational model predicts an optimum value for the inlet air velocity that is mainly maintaining... 

    Second law analysis of a magnetohydrodynamic plasma generator

    , Article Energy ; Volume 32, Issue 9 , 2007 , Pages 1603-1616 ; 03605442 (ISSN) Saidi, M. H ; Montazeri, A ; Sharif University of Technology
    Elsevier Ltd  2007
    Abstract
    The performance of an MHD generator utilizing plasma as working fluid has been assessed from the viewpoint of the second law of thermodynamics. The plasma flow in the generator linear duct has been solved by dividing the channel cross-section to an inviscid core region and the viscous boundary layers in the vicinity of the walls. The Hall effect has been taken into account and equilibrium ionization has been assumed. The dependence of the plasma properties such as Hall parameter, the coefficients of thermal and electrical conductivity, and viscosity on the plasma state has also been considered. Using the information obtained on the plasma behaviour in the generator, the entropy generation... 

    CO2 separation by supported liquid membranes synthesized with natural deep eutectic solvents

    , Article Environmental Science and Pollution Research ; Volume 28, Issue 26 , 2021 , Pages 33994-34008 ; 09441344 (ISSN) Saeed, U ; Khan, A. L ; Gilani, M. A ; Aslam, M ; Khan, A. U ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Betaine-based natural deep eutectic solvents (NADESs), a new class of green solvents, were immobilized into a porous polyvinylidene fluoride (PVDF) support and evaluated for the separation of CO2 from CO2/N2 and CO2/CH4 mixtures. Two types of NADESs were synthesized by mixing betaine (hydrogen bond acceptor-HBA) with malic acid and tartaric acid (hydrogen bond donors-HBD) respectively. FTIR and Raman spectroscopy were studied to confirm the synthesis and purity of the NADESs. The thermal strength of the NADESs was investigated using thermogravimetric analysis. The gas permeation results of the fabricated NADES-based-supported liquid membranes (NADES-SLMs) showed that the permeability of CO2... 

    Dynamic performance of concrete slabs reinforced with steel and GFRP bars under impact loading

    , Article Engineering Structures ; Volume 191 , 2019 , Pages 62-81 ; 01410296 (ISSN) Sadraie, H ; Khaloo, A ; Soltani, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Reinforced concrete slabs are common structural elements that could be exposed to impact loading. Although use of reinforced concrete slabs and utilization of Fiber Reinforced Polymer (FRP) as alternative to traditional steel reinforcement slabs are growing, but the influence of various parameters on their response under impact loads is not properly evaluated. This study investigated the effect of rebar's material, amount and arrangement of reinforcements, concrete strength and slab thickness on dynamic behavior of reinforced concrete slabs using both laboratory experiments and numerical simulations. Performance of fifteen 1000 × 1000 mm concrete slabs, including two 75 mm thick plain slabs,... 

    Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta

    , Article Bioresource Technology ; Volume 306 , 2020 Sadeghzadeh, S ; Ghobadi Nejad, Z ; Ghasemi, S ; Khafaji, M ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of “enzymatic treatment” has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were... 

    Numerical simulation of free-surface waves and wave induced separation

    , Article Scientia Iranica ; Volume 15, Issue 3 , 2008 , Pages 323-331 ; 10263098 (ISSN) Sadathosseini, S. H ; Mousaviraad, S. M ; Firoozabadi, B ; Ahmadi, G ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    The present study is concerned with the numerical simulation of free-surface waves and wave induced separation in the presence of an intrusion. The results of several simulations are reported. The first study was performed for a NACA0024 surface piercing hydrofoil over a range of several Froude numbers (0.19, 0.37, 0.55), along with wave breaking at Fr = 1.0 The NACA0024 foil was of particular interest, as it almost has no separation at large depths; thus the effect of the free-surface wave and the wave induced separation could be studied. Free- surface waves and wave induced separation results were evaluated and compared with both the available experimental data and the previous numerical... 

    Extended and Unscented Kalman filters for parameter estimation of an autonomous underwater vehicle

    , Article Ocean Engineering ; Vol. 91, issue , 2014 , p. 329-339 Sabet, M. T ; Sarhadi, P ; Zarini, M ; Sharif University of Technology
    Abstract
    In this paper, a high performance procedure for estimating of hydrodynamic coefficients in Autonomous Underwater Vehicles (AUV's) is proposed. In modeling of an AUV, experimental data should be verified and validated using appropriate techniques. Due to implementation complexity in calculating methods, computation of hydrodynamic parameters is challenging. This paper presents analytical approaches for estimating an AUV's hydrodynamic coefficients. Nonlinear Kalman Filter (KF) algorithms are implemented to estimate unknown augmented states (coefficients). A comparative study is conducted which shows the superior performance of Unscented Kalman Filter (UKF) in comparison with Extended Kalman...