Loading...
Search for: perturbation-techniques
0.006 seconds
Total 133 records

    Analytic solutions to the oscillatory behavior and primary resonance of electrostatically actuated microbridges

    , Article International Journal of Structural Stability and Dynamics ; Volume 11, Issue 6 , December , 2011 , Pages 1119-1137 ; 02194554 (ISSN) Mojahedi, M ; Zand, M. M ; Ahmadian, M. T ; Babaei, M ; Sharif University of Technology
    Abstract
    In this paper, the vibration and primary resonance of electrostatically actuated microbridges are investigated, with the effects of electrostatic actuation, axial stress, and mid-plane stretching considered. Galerkin's decomposition method is adopted to convert the governing nonlinear partial differential equation to a nonlinear ordinary differential equation. The homotopy perturbation method (a special case of homotopy analysis method) is then employed to find the analytic expressions for the natural frequencies of predeformed microbridges, by which the effects of the voltage, mid-plane stretching, axial force, and higher mode contribution on the natural frequencies are studied. The primary... 

    Health monitoring of structures using few frequency response measurements

    , Article Scientia Iranica ; Volume 17, Issue 6 A , NOVEMBER-DECEMBER , 2010 , Pages 493-500 ; 10263098 (ISSN) Golafshani, A. A ; Kianian, M ; Ghodrati, E ; Sharif University of Technology
    2010
    Abstract
    The development of damage detection techniques for offshore jacket structures is vital for preventing catastrophic events. This paper applies a frequency response based method for the purpose of structural health monitoring. In this approach, the concept of a minimum rank perturbation theory is used. The feasibility of using a finite number of sensors and its effect on damage detection capabilities is investigated. In addition, the performance of the proposed method is evaluated in the case of multiple damages. The aforementioned points are illustrated using the numerical study of a two dimensional jacket platform  

    Investigation of Casimir and Van der Waals forces for a nonlinear double-clamped beam using homotopy perturbation method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009 ; Volume 12, Issue PART A , 2010 , Pages 487-494 ; 9780791843857 (ISBN) Mojahedi, M ; Moeenfard, H ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this study, static deflection and Instability of double- clamped nanobeams actuated by electrostatic field and intermolecular force, are investigated. The model accounts for the electric force nonlinearity of the excitation and for the fringing field effect. Effects of mid-plane stretching and axial loading are considered. Galerkin's decomposition method is utilized to convert the nonlinear differential equation of motion to a nonlinear algebraic equation which is solved using the homotopy perturbation method. The effect of the design parameters such as axial load and mid-plane stretching on the static responses and pull-in instability is discussed. Results are in good agreement with... 

    Response of the beams on random Pasternak foundations subjected to harmonic moving loads

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 11 , 2010 , Pages 3013-3023 ; 1738494X (ISSN) Younesian, D ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    Dynamic response of infinite beams supported by random viscoelastic Pasternak foundation subjected to harmonic moving loads is studied. Vertical stiffness in the support is assumed to follow a stochastic homogeneous field consisting of a small random variation around a deterministic mean value. By employing the first order perturbation theory and calculating appropriate Green's functions, the variance of the deflection and bending moment are obtained analytically in integral forms. To simulate the induced uncertainty, two practical cases of cosine and exponential covariance are utilized. A frequency analysis is performed and influences of the correlation length of the stiffness variation on... 

    Analysis of non-newtonian fluids in microchannels with different wall materials

    , Article ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels ; 2009 , Pages 697-703 ; 9780791843499 (ISBN) Darbandi, M ; Behshad Shafii, M ; Safari Mohsenabad, S ; Sharif University of Technology
    Abstract
    The behavior of non-Newtonian fluids is considered as an important subject in micro scale and microfluidic flow researches. Because of the complexity and cost in the numerical works and the experimental set-ups in some instances, the analytical approach can be taken into account as a robust alternative tool to solve the non-Newtonian microfluidic flows in some special cases benefiting from a few simplified assumptions. In this work, we analyze the flow of two non-Newtonian fluids including the power-law and grade-fluid models in microchannels. For the grade-fluid, the stress tensors are defined considering the Rivlin-Ericksen tensor definitions. To avoid the complexities in the entrance... 

    High-precision impedance control method for flexible base moving manipulators

    , Article Advanced Robotics ; Volume 23, Issue 1-2 , 2009 , Pages 65-87 ; 01691864 (ISSN) Salehi, M ; Vossoughi, G. R ; Sharif University of Technology
    2009
    Abstract
    The general problem of impedance control is addressed for a robotic manipulator with a moving flexible base. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base moving manipulators (FBMMs) is rather new and is being considered. The dynamic of the manipulator is decomposed into slow and fast dynamics using the singular perturbation method. A new sliding mode impedance control (SMIC) method using an element on the end-effector is proposed for high-precision impedance control of FBMMs. The SMIC method as a robust impedance control law is derived for the slow dynamics. The asymptotic... 

    Micro resonator nonlinear dynamics considering intrinsic properties

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 121-129 ; 10263098 (ISSN) Sayyaadi, H ; Tadayon, M. A ; Eftekharian, A. A ; Sharif University of Technology
    2009
    Abstract
    One of the most important phenomena to affect the motion behaviour of Micro Resonators is their thermal dependency. This has recently received the attention of researchers widely. A thermal phenomenon has two main effects, the first is damping, due to internal friction, and the second is softening, due to Young's modulus-temperature relationship. In this research work, some theoretical and experimental reported results are used to make a proper model, including thermal phenomena. Two Lorentzian functions are used to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, considering capacitor... 

    Impedance control and gain tuning of flexible base moving manipulators using PSO method

    , Article 2008 IEEE International Conference on Information and Automation, ICIA 2008, Zhangjiajie, Hunan, 20 June 2008 through 23 June 2008 ; 2008 , Pages 458-463 ; 9781424421848 (ISBN) Salehi, M ; Vossoughi, G. R ; Vajedi, M ; Brooshaki, M ; Sharif University of Technology
    2008
    Abstract
    New gains tuning and impedance control method were addressed for flexible base moving manipulators. Slow and fast dynamics of robot are decoupled using singular perturbation method. Then, using sliding mode control method, an impedance control law was derived for the slow dynamics. Combined control law was proposed comprising the impedance control law and a feedback control law for the fast dynamics. As fist time, we proposed a new online particle swarm optimization algorithm for gain tuning of impedance control at the contact moments of end effector and unknown environments. This proposed Sliding Mode Impedance Controller and online PSO were simulated for a Flexible Base Moving Manipulator.... 

    Impedance control of flexible base mobile manipulator using singular perturbation method and sliding mode control law

    , Article International Journal of Control, Automation and Systems ; Volume 6, Issue 5 , 2008 , Pages 677-688 ; 15986446 (ISSN) Salehi, M ; Vossoughi, G ; Sharif University of Technology
    2008
    Abstract
    In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode... 

    Impedance control of flexible base mobile manipulators new method: SMIC for FBMM

    , Article 13th IASTED International Conference on Robotics and Applications, RA 2007 and Proceedings of the IASTED International Conference on Telematics, Wurzburg, 29 August 2007 through 31 August 2007 ; 2007 , Pages 39-44 ; 9780889866850 (ISBN) Salehi, M ; Vossoughi, G ; Sharif University of Technology
    2007
    Abstract
    In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode... 

    Nonlinear dynamic analysis of a V-shaped microcantilever of an atomic force microscope

    , Article Applied Mathematical Modelling ; Volume 35, Issue 12 , 2011 , Pages 5903-5919 ; 0307904X (ISSN) Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper is devoted to investigate the nonlinear behaviors of a V-shaped microcantilever of an atomic force microscope (AFM) operating in its two major modes: amplitude modulation and frequency modulation. The nonlinear behavior of the AFM is due to the nonlinear nature of the AFM tip-sample interaction caused by the Van der Waals attraction/repulsion force. Considering the V-shaped microcantilever as a flexible continuous system, the resonant frequencies, mode shapes, governing nonlinear partial and ordinary differential equations (PDE and ODE) of motion, boundary conditions, frequency and time responses, potential function and phase-plane of the system are obtained analytically. The... 

    Aeroelastic analysis of helicopter rotor blade in hover using an efficient reduced-order aerodynamic model

    , Article Journal of Fluids and Structures ; Volume 25, Issue 8 , 2009 , Pages 1243-1257 ; 08899746 (ISSN) Shahverdi, H ; Salehzadeh Noubari, A ; Behbahani Nejad, M ; Haddadpour, H ; Sharif University of Technology
    2009
    Abstract
    This paper presents a coupled flap-lag-torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton-Raphson method. Numerical results comprising steady equilibrium... 

    Non-linear analysis of functionally graded circular plates under asymmetric transverse loading

    , Article International Journal of Non-Linear Mechanics ; Volume 44, Issue 8 , 2009 , Pages 928-942 ; 00207462 (ISSN) Nosier, A ; Fallah, F ; Sharif University of Technology
    2009
    Abstract
    Based on the first-order shear deformation plate theory with von Karman non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded circular plates under transverse mechanical loading are investigated. Introducing a stress function and a potential function, the governing equations are uncoupled to form equations describing the interior and edge-zone problems of FG plates. This uncoupling is then used to conveniently present an analytical solution for the non-linear asymmetric deformation of an FG circular plate. A perturbation technique, in conjunction with Fourier series method to model the problem asymmetries, is used to obtain the solution for various clamped...