Loading...
Search for: petroleum
0.018 seconds
Total 571 records

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; 2018 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting... 

    The effect of brine salinity on water-in-oil emulsion stability through droplet size distribution analysis: a case study

    , Article Journal of Dispersion Science and Technology ; Volume 39, Issue 5 , 2018 , Pages 721-733 ; 01932691 (ISSN) Maaref, S ; Ayatollahi, S ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Water-in-oil emulsion usually forms during waterflooding in some heavy oil reservoirs. The composition and salinity of the injected water critically affect the w/o emulsion droplet size distribution, which control the emulsion stability and emulsion flow in porous media. The aim of the present work is to assess the effect of different sea water salinities on w/o emulsion stability through microscopic imaging. Therefore, w/o emulsions were prepared with different sea water samples, which were synthesized to resemble Persian Gulf, Mediterranean, Red Sea, and North Sea water samples. The results showed that log-normal distribution function predicts very well the experimental data to track the... 

    Application of Fuzzy C-means algorithm as a novel approach to predict solubility of hydrocarbons in carbon dioxide

    , Article Petroleum Science and Technology ; Volume 36, Issue 4 , 2018 , Pages 308-312 ; 10916466 (ISSN) Darvish, H ; Garmsiri, H ; Zare, M ; Hemmati, N ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    In the recent years, declination of oil reservoir causes the importance of researches on enhancement of oil recovery processes become more important. One of wide applicable approaches in enhancement of oil recovery is carbon dioxide injection which becomes interested because of relative low cost, good displacement and environmentally aspects. The injection of carbon dioxide to oil reservoir causes the lighter hydrocarbons of crude oil are extracted by CO2. This phenomena can be affected by various factors such the solubility of hydrocarbons in carbon dioxide so in the present investigation Fuzzy c-means (FCM) as a novel approach for estimation of solubility of alkanes in carbon dioxide in... 

    Performance evaluation of a new nanocomposite polymer gel for water shutoff in petroleum reservoirs

    , Article Journal of Dispersion Science and Technology ; Volume 40, Issue 10 , 2019 , Pages 1479-1487 ; 01932691 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    A new polymer gel nanocomposite is fabricated for excess water production control (water shut off) in petroleum reservoirs and its rheological behavior is evaluated in the presence of sea water and formation water at the temperature of 100 °C. It is shown that at a high salinity without using SiO2 nanoparticles, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water are 12.5 Pa and 9.8 Pa respectively. However by incorporation of SiO2 nanoparticles in the polymer gel matrix, the elastic modulus of synthesized polymer gel in the presence of sea water and formation water can be improved to 13.56 Pa and 11.57 Pa respectively, which is quite interesting... 

    Thermophysical interface properties of crude oil and aqueous solution containing sulfate anions: experimental and modeling approaches

    , Article Petroleum Science and Technology ; Volume 37, Issue 21 , 2019 , Pages 2167-2173 ; 10916466 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    Sulfate anion is well-known for being one of the most active agents to be injected into the oil reservoirs and being capable of not only altering the interfacial properties of crude oil but also enhancing the water solution properties in oil recovery. In the current study, the effects of temperature and pressure were studied on interfacial tension (IFT) as well as the adsorption behavior of two different solutions containing sulfate anion using experimental measurements and modeling approaches. Although it was expected that IFT values of the studied systems might decrease as temperature increased due to the improvement in the molecule mobility and solubility of crude oil in water, which... 

    Fractal analysis of asphaltene aggregation phenomena in live oils at elevated pressure and temperature

    , Article Particulate Science and Technology ; Volume 38, Issue 4 , 2020 , Pages 454-463 Mohammadi, S ; Rashidi, F ; Mousavi Dehghani, S. A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    In this work, high-pressure microscopy technique was used to measure the size and fractal dimension of asphaltene aggregates formed in different live oil samples at elevated pressures and temperatures. It was found that the asphaltene aggregates in live oil samples are irregular fractal-like structures with pressure−temperature-dependent fractal dimensions. By monitoring the variation of the fractal dimension and size of the asphaltene aggregates with pressure and temperature, the mechanisms responsible for asphaltene aggregation process at elevated pressures and temperatures can be well predicted. The range of fractal dimension of asphaltene aggregates in live oils is similar to that... 

    Effect of SO4 −2 ion exchanges and initial water saturation on low salinity water flooding (LSWF) in the dolomite reservoir rocks

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 6 , 2020 , Pages 841-855 Safavi, M. S ; Masihi, M ; Safekordi, A. A ; Ayatollahi, S ; Sadeghnejad, S ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The low salinity water injection has become one of the most important studies in the oil industry for improving oil recovery compared to conventional seawater injection. Thus, extensive studies have been conducted in carbonate and sandstone reservoirs to investigate how the physical properties of rocks and the chemical composition of fluids influence low salinity effect, while, the carbonate reservoir rocks requires more investigation of the effect of molecular and/or ionic interactions. In this experimental work, the effectiveness of various water flooding schemes in carbonate reservoir rock samples is investigated. In this regard, the oil recovery potential of seawater (SW), reservoir... 

    Investigation of rock and fluid interactions during engineered water flooding in dolomite reservoir rocks

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Safavi, M. S ; Masihi, M ; Safekordi, A. A ; Ayatollahi, S ; Sadeghnejad, S ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Engineered water (EW) flooding is one of the enhanced oil recovery (EOR) techniques in carbonate reservoirs. In this method, the wettability of reservoir rock is altered by controlling the amount of various ions in the injected brine. The thermodynamics of wettability is related to the surface interactions and stability of water film on a rock surface. It can be identified by calculating disjoining pressure isotherms. In this study, core flooding tests, contact angle and zeta potential measurements along with the disjoining pressure isotherm calculation by the DLVO theory were used to investigate the wettability alteration of dolomite rock. Four brines include reservoir formation water... 

    A modified method for detection of interface and onset point in the asphaltenic fluids

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Shabani, A ; Bayat Shahparast, M ; Barzegar, F ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Asphaltene precipitation and deposition causes many serious problems to the petroleum industry from the reservoir to the surface facilities. Therefore, it is important to bring it under control by finding a method to accelerate or slow down its precipitation and deposition. For achieving this purpose two parameters play an important role; onset point of the precipitation and amount of the deposited phase. When asphaltene precipitates, it is capable of depositing in the solution. After the deposition, the solution split into two phases; asphaltene-rich and asphaltene-lean. Determining the amount of the deposited phase needs to distinguish the interface between two phases. In this study, a... 

    The impacts of silica nanoparticles coupled with low-salinity water on wettability and interfacial tension: Experiments on a carbonate core

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 8 , 2020 , Pages 1159-1173 Sadatshojaei, E ; Jamialahmadi, M ; Esmaeilzadeh, F ; Wood, D. A ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Two main reservoir mechanisms that impact oil recovery factors are wettability alteration and interfacial tension (IFT) change. In this study, these two key mechanisms are evaluated experimentally for samples from the Asmari (carbonate) oil reservoir utilizing silica nanoparticles in the presence of low-salinity water. The nanofluid, rock formation and crude oil samples were prepared meticulously to ensure meaningful experimental could be conducted over a range of low-salinity conditions. The results show that across the range of salinities studied, the absolute value of zeta potential of nanofluids decreases with increasing total dissolved solids (TDS) in the water treated with silica... 

    Phase behavior and rheology of emulsions in an alkaline/cosolvent/crude oil/brine system

    , Article Petroleum Science and Technology ; Volume 34, Issue 3 , 2016 , Pages 207-215 ; 10916466 (ISSN) Bahman Abadi, H ; Hemmati, M ; Shariat Panahi, H ; Masihi, M ; Karam Beigi, M. S ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Phase behavior of active crude oil/alkaline was systematically studied in the presence of cosolvents. For this purpose, several factors have been considered: alkaline concentration, oil concentration, and type of brine. The best composition was used to generate emulsion for rheology and displacement tests. Furthermore, precipitation of alkaline was eliminated by its synergy with EDTA. Next, rheology of emulsion was analyzed by which a Power law model was developed that indicates non-Newtonian behavior of emulsion. Moreover, the viscosity of emulsion was reduced by the addition of cosolvent as well as by the increase of alkaline concentration. Finally, the best formulation (containing... 

    Effects of low-salinity water coupled with silica nanoparticles on wettability alteration of dolomite at reservoir temperature

    , Article Petroleum Science and Technology ; Volume 34, Issue 15 , 2016 , Pages 1345-1351 ; 10916466 (ISSN) Sadatshojaei, E ; Jamialahmadi, M ; Esmaeilzadeh, F ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Wettability alteration in porous media is one of the mechanisms for enhancing oil recovery through injecting low-salinity water into carbonate reservoirs, in which active ions can remove the carboxylic oil component from the rock surface, altering the rock's wettability toward a water-wet condition. This study investigated the concomitant effects of low-salinity water and hydrophilic SiO2 nanoparticles on oil-wet dolomite rock. Results revealed that low-salinity water coupled with hydrophilic nano-SiO2 in oil-wet dolomite rock remarkably affected the wettability alteration of the rock, showing that the simultaneous presence of ions in water and hydrophilic nano-SiO2 led to considerable... 

    Estimation of natural gas optimum allocation to consuming sectors in year 2025 in Iran

    , Article Energy Sources, Part B: Economics, Planning and Policy ; Volume 11, Issue 7 , 2016 , Pages 587-596 ; 15567249 (ISSN) Maroufmashat, A ; Sattari, S ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Due to a large number of rich natural gas reserves in Iran, and considering the acceptable income from the exports of oil products, the consumption of gas instead of oil products in different consuming sectors seems to be rational. Therefore, in this article, the allocation of natural gas to different sectors such as residential, industries, power plants, transportation, reinjection to oil wells, export, and so forth is estimated based on the three scenarios using a linear programming method for the year 2025 in Iran. The results indicate that if there is no planned consumption management, the allocation of gas in future years will certainly have deficiencies in some sectors in Iran.... 

    Adsorptive removal of petroleum hydrocarbons from aqueous solutions by novel zinc oxide nanoparticles grafted with polymers

    , Article Petroleum Science and Technology ; Volume 34, Issue 8 , 2016 , Pages 778-784 ; 10916466 (ISSN) Salehi, B ; Hasani, A. H ; Ahmad Panahi, H ; Borghei, S. M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Zinc oxide nanoparticles were synthesized and modified by a three-stage method. Elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy, and Brunauer–Emmett–Teller method were applied to characterize the nanoparticles. These nanoparticles were evaluated for toluene adsorption from aqueous solutions as a representative of petroleum hydrocarbon removal. The optimum adsorption condition achieved at pH of 6 and contact time of 30 min. The adsorption isotherms were fitted to the Langmuir model. The measured adsorption capacity was 12.8 mg g−1. This study demonstrated that these nanoparticles could be used as an... 

    A novel correlation approach for viscosity prediction of water based nanofluids of Al2O3, TiO2, SiO2 and CuO

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 58 , 2016 , Pages 19-27 ; 18761070 (ISSN) KalantariMeybodi, M ; Daryasafar, A ; MoradiKoochi, M ; Moghadasi, J ; BabaeiMeybodi, R ; KhorramGhahfarokhi, A ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2016
    Abstract
    Nanofluids viscosity is one of the most important thermophysical properties in nanofluids usage especially in chemical and petroleum engineering applications. So it is highly desirable to predict the viscosity of nanofluids accurately. Experimental measurements are impossible in most situations and present models are not comprehensive and efficient especially for high temperature, high volume concentration and high viscosity values. In this study, a new correlation has been developed based on the comprehensive database of water based Al2O3, TiO2, SiO2 and CuO nanofluids viscosity data found in literature. The proposed correlation uses temperature, nanoparticle size, nanoparticle volumetric... 

    Estimation of underground interwell connectivity: A data-driven technology

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 116 , 2020 , Pages 144-152 Jafari Dastgerdi, E ; Shabani, A ; Zivar, D ; Jahangiri, H. R ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2020
    Abstract
    Water injection into petroleum reservoirs is widely performed around the world for enhancing oil recovery. Understanding the underground fluid path is an important factor in improving reservoir performance under waterflooding operation. This may be used to optimize subsequent oil recovery by changing injection patterns, assignment of well priorities in operations, recompletion of wells, targeting infill drilling, and reduce the need for expensive surveillance activities. Most of the hydrocarbon reservoirs are equipped with sensors that measure the flow rate, pressure, and temperature in the wellbores continuously. Valuable and useful information about the interwell connections can be... 

    Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 5, Issue 2 , June , 2015 , Pages 189-196 ; 21900558 (ISSN) Cheraghian, G ; Khalili Nezhad, S. S ; Kamari, M ; Hemmati, M ; Masihi, M ; Bazgir, S ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Recently, a renewed interest arises in the application of nanotechnology for the upstream petroleum industry. In particular, adding nanoparticles to fluids may drastically benefit enhanced oil recovery (EOR) and improve well drilling, by changing the properties of the fluid, rocks wettability alteration, advanced drag reduction, strengthening the sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary trapped oil. In this study, we focus on roles of clay nano-particles on polymer viscosity. Polymer-flooding schemes for recovering residual oil have been in general less than satisfactory due to loss of chemical components by adsorption on reservoir... 

    Evaluation of interfacial mass transfer coefficient as a function of temperature and pressure in carbon dioxide/normal alkane systems

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 51, Issue 4 , April , 2015 , Pages 477-485 ; 09477411 (ISSN) Nikkhou, F ; Keshavarz, P ; Ayatollahi, S ; Raoofi Jahromi, I ; Zolghadr, A ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    CO2 gas injection is known as one of the most popular enhanced oil recovery techniques for light and medium oil reservoirs, therefore providing an acceptable mass transfer mechanism for CO2–oil systems seems necessary. In this study, interfacial mass transfer coefficient has been evaluated for CO2–normal heptane and CO2–normal hexadecane systems using equilibrium and dynamic interfacial tension data, which have been measured using the pendant drop method. Interface mass transfer coefficient has been calculated as a function of temperature and pressure in the range of 313–393 K and 1.7–8.6 MPa, respectively. The results showed that the interfacial resistance is a parameter that can control... 

    Investigating the effect of heterogeneity on infill wells

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 6, Issue 3 , 2016 , Pages 451-463 ; 21900558 (ISSN) Bagheri, M ; Masihi, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In recent years, improving oil recovery (IOR) has become an important subject for the petroleum industry. One IOR method is infill drilling, which improves hydrocarbon recovery from virgin zones of the reservoir. Determining the appropriate location for the infill wells is very challenging and greatly depends on different factors such as the reservoir heterogeneity. This study aims to investigate the effect of reservoir heterogeneity on the location of infill well. In order to characterize the effect of heterogeneity on infill well locations, some geostatistical methods, e.g., sequential gaussian simulation, have been applied to generate various heterogeneity models. In particular, different... 

    High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships

    , Article Colloid and Polymer Science ; Volume 294, Issue 3 , 2016 , Pages 513-525 ; 0303402X (ISSN) Tamsilian, Y ; Ramazani S. A ; Shaban, M ; Ayatollahi, S ; Tomovska, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    High molecular weight polyacrylamide (PAM) nanoparticle dispersions are products with wide application possibilities, the most important of which is in petroleum industry such as drilling fluid and flooding agent in enhanced oil recovery. For that aim, it is necessary to achieve complete control of the final dispersion and polymer properties during the synthesis step. In this work, PAMs were synthesized by inverse emulsion polymerization of aqueous acrylamide solution in cyclohexane in the presence of emulsifier mixture of Span 20 and Span 80. We present a comprehensive study of the effects of variation of all important reaction conditions (agitation rate, reaction time and temperature,...