Loading...
Search for: ph
0.007 seconds
Total 372 records

    A pH-sensitive carrier based-on modified hollow mesoporous carbon nanospheres with calcium-latched gate for drug delivery

    , Article Materials Science and Engineering C ; Volume 109 , 2020 Asgari, S ; Pourjavadi, A ; Hosseini, S. H ; Kadkhodazadeh, S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A novel nanocarrier based-on hollow mesoporous carbon nanospheres (HMCNs) with primary amines on its surface, a large cavity, and good hydrophilicity was synthesized by a hydrothermal reaction. The primary amine functionalities on the mesoporous carbon were used as the initiation sites for growing poly (epichlorohydrin) (PCH) chains. The chlorine groups in the side chain of PCH were replaced with imidazole as the pendant groups. Calcium chloride (CaCl2) was applied as a capping agent. The coordination bonding was formed between pendant imidazole groups and calcium ions. Doxorubicin (DOX) was selected as a model of hydrophilic anticancer drug and was loaded onto the nanocarrier and released... 

    The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor

    , Article Bioresource Technology ; Volume 99, Issue 8 , 2008 , Pages 2840-2845 ; 09608524 (ISSN) Mousavi, S. M ; Yaghmaei, S ; Vossoughi, M ; Roostaazad, R ; Jafari, A ; Ebrahimi, M ; Chabok, O. H ; Turunen, I ; Sharif University of Technology
    2008
    Abstract
    In this study the effects of initial concentration of Fe(II) and Fe(III) ions as well as initial pH on the bioleaching of a low-grade sphalerite ore in a leaching column over a period of 120 days with and without bacteria were investigated. Four different modifications of medium were used as column feed solutions to investigate the effects of initial concentration of Fe(II) and Fe(III) ions on zinc extraction. The experiments were carried out using a bench-scale, column leaching reactor, which was inoculated with mesophilic iron oxidizing bacteria, Acidithiobacillus ferrooxidans, initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran). The effluent solutions were... 

    A wide-range pH indicator based on colorimetric patterns of gold@silver nanorods

    , Article Sensors and Actuators B: Chemical ; Volume 358 , 2022 ; 09254005 (ISSN) Orouji, A ; Abbasi Moayed, S ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The potential of hydrogen (pH) is a basic and critical parameter representing the function of numerous chemicals/biomolecules. Due to the widespread applications of pH in diverse fields, the development of rapid and simple yet reliable probes for the determination of pH has attracted significant interest. In this paper, by using AuNRs, silver ions, and ascorbic acid as colorimetric pH sensor, a multicolorimetric nanosensor is described for pH measurement. The reduction of silver ions by ascorbic acid which is strongly influenced by pH, results in silver nanoshell deposition on the surface of AuNRs. Consequently, the formation of Au@Ag core-shell NRs causes a series of blue shifts in the... 

    Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: Preparation, swelling behavior, and drug delivery

    , Article Journal of Biomaterials Science, Polymer Edition ; Vol. 25, issue. 17 , 2014 , p. 1891-1906 Mahdavinia, G. R ; Rahmani, Z ; Karami, S ; Pourjavadi, A ; Sharif University of Technology
    Abstract
    This work describes the preparation of magnetic and pH-sensitive beads based on κ-carrageenan and sodium alginate for use as drug-targeting carriers. Physical cross-linking using K+/Ca2+ ions was applied to obtain ionic cross-linked magnetic hydrogel beads. The produced magnetite beads were thoroughly characterized by TEM, SEM/EDS, XRD, FTIR, and VSM techniques. While the water absorbency (WA) of magnetic beads was enhanced by increasing the weight ratio of κ-carrageenan, introducing magnetic nanoparticles caused a decrease in WA capacity from 15.4 to 6.3 g/g. Investigation on the swelling of the hydrogel beads in NaCl, KCl, and CaCl2 solutions revealed the disintegration of beads depending... 

    Influence of key parameters on crude oil desalting: An experimental and theoretical study

    , Article Journal of Petroleum Science and Engineering ; Volume 90-91 , July , 2012 , Pages 107-111 ; 09204105 (ISSN) Vafajoo, L ; Ganjian, K ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    Desalting plants are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. Experiments in both the laboratory and field have shown the desalting process parameters to be very complicated. This research reflects the results of a study conducted regarding the impact of operational desalting parameters, including the effects of temperature, injected chemicals and the pH of the crude oil associated water, on an electrostatic desalter on one of the oil platforms owned by the Iranian Oil Offshore Company in the Persian Gulf. The temperature range applied was between 98 to 133 °C, at which the effects on water and oil density as well as salt... 

    Removal of chromium from aqueous solution using polyaniline - Poly ethylene glycol composite

    , Article Journal of Hazardous Materials ; Volume 184, Issue 1-3 , December , 2010 , Pages 248-254 ; 03043894 (ISSN) Riahi Samani, M ; Borghei, S. M ; Olad, A ; Chaichi, M. J ; Sharif University of Technology
    2010
    Abstract
    The adsorption of chromium compounds from solutions by a composite of polyaniline/poly ethylene glycol (PANi/PEG) was investigated in this study. Experiments were conducted in batch mode under various operational conditions including agitation time, solution pH, PANi/PEG dose and initial concentration of chromium salts. Results showed that concentration of PEG at synthesizing stage has a significant effect on the capacity of produced composite for removal of chromium. Morphologically, PANi/PEG composite is closely dependent on the concentration of PEG. Maximum removal of hexavalent chromium was experienced when 2. g/L of PEG was used in synthesis of PANi/PEG. Removal of hexavalent chromium... 

    Magnetic micellar nanocarrier based on pH-sensitive PEG-PCL-PEG triblock copolymer: a potential carrier for hydrophobic anticancer drugs

    , Article Journal of Nanoparticle Research ; Volume 20, Issue 10 , 2018 ; 13880764 (ISSN) Pourjavadi, A ; Dastanpour, L ; Mazaheri Tehrani, Z ; Sharif University of Technology
    Abstract
    In this research, we report a magnetic pH-sensitive polymeric micelle designed for hydrophobic drug carrier in cancer treatment. This carrier was prepared by self-assembly of biodegradable triblock copolymer PEG-PCL-PEG coated on oleate-modified magnetic nanoparticles. The amphiphilic triblock copolymer was synthesized via reaction between the aldehyde group from the hydrophilic component with the amine group of the hydrophobic component. The resulting Schiff base linkage was sensitive to pH. The structure of nanocarrier was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Morphology and size of the magnetic... 

    Study on Factor Involved in Multi-step Two Phase CO2 Sequestration Process

    , Ph.D. Dissertation Sharif University of Technology Hemmati, Azadeh (Author) ; Shaygan Salek, Jalaloddin (Supervisor) ; Kariminia, Hamid Reza (Supervisor)
    Abstract
    The increase in CO2 concentration and its effect on ecosystem and global warming make carbon sequestration inevitable for now and future. Ex-situ carbonation of mineral ores is one of the studied sequestration methods. This method is permanent and safe in comparison with others. This process is carried out in four steps and two phases in this dissertation. At the first stage magnesium was extracted from its mineral silicate ore (Mixture of serpentine and olivine) by hydrochloric acid (HCl) and was dissolved in liquid phase as ion. After that the resultant leachate of extraction step was purified from unwanted ions extracted from minerals in two steps by precipitation formed by increasing pH.... 

    Preparation of Graphene Oxide Magnetic Nanoparticles with Mesoporous Silica Layer, Coating with pH-Sensitive Polymer as Nanocarriers of Anticancer Drugs

    , M.Sc. Thesis Sharif University of Technology Shakerpoor, Alireza (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Man’s struggle for optimization in different areas has been an endless one. Optimizing methods of cancer treatment is not an exception. Because of numerous side effects of anti-cancer drugs, drug delivery systems (DDS) have been recently given much interest. Considering some aspects, DDS are helpful in reducing harmful effects of anti-cancer drugs and more efficient healing by these drugs: first by reducing the dosage of drug by controllable and sustainable release of drug in a kinetic (diffusion) pattern; second by smart release of drug in target tissue which in turn protects sound tissues not to be in contact with drug.In this study, three kinds of nanoparticles have been used for DDS... 

    Simulation of Proteins at Constant pH

    , M.Sc. Thesis Sharif University of Technology Rahmani, Parisa (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    Proteins are of fundamental importance for life on Earth and participate in virtually every process within cells. The function of a protein depends on its three dimensional structure. If this is disrupted, the protein loses its biological activity. In addition to temperature, pressure and ionic strength, pH is also an important factor that affects the configuration of proteins. Proteins contain acidic and basic residues. Variations in pH lead to changes in distribution of atomic charge, which in turn affect the stability and function of proteins. Protein folding occurs in a specific pH range, a deviation from which may facilitate misfolding or Amyloid aggregation. It is therefore necessary... 

    Deposition of Ceramic Nanoparticles on Aluminum Sheet by Air Gun Spraying for ARB Processing of Nanocomposite Sheets

    , M.Sc. Thesis Sharif University of Technology Keramat, Ehsan (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Particle reinforced aluminum matrix composites have considerable attraction in automotive and aerospace industries due to their special properties as light weight, high ratio of strength/density, improved elastic modulus, low coefficient of thermal expansion and high wear and corrosion resistance. Among the production processes of metal matrix composites, accumulative roll bonding process has particular importance due to producing ultrafine grained composite sheets. However, uncontrolled and undesired agglomeration of particles is the main problem in producing these composites. In this research, the Al2O3 and SiC nanoparticles were electrostatically stabilized against agglomeration by... 

    Modification of Vertically Aligned Carbon Nanotubes with RuO2 for a Solid-State pH Sensor

    , M.Sc. Thesis Sharif University of Technology Kahram, Mohaddeseh (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    In this work, a novel type electrode based on RuO2 nanoparticles-modified vertically aligned carbon nanotubes (RuO2/MWCNTs) was investigated. ThisRuO2/MWCNTs electrode not only shows a high capacity nature,but also possesses a good response to the pH value. In order to develope this sensor, aligned carbon nanotubes were synthesized by the chemical vapor deposition at first and then modified with RuO2 nanopartcles by sol-gel method. Various parameters affecting the growth of nanotubes, such as substrate type, surface finishing, surface roughness, the growth temperature and carbon feed rate was studiedand and optimal conditions for growth were obtained. At last, aligned nanotubes with a... 

    TiO2 Nanophotocatalyst: Preparation via Sol-Gel Method and Deposition on Natural Fiber

    , M.Sc. Thesis Sharif University of Technology Haghighat, Shima (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    TiO2 is one of the most frequently used photocatalyst materials. Porous TiO2 nanostructure has drawn much attention recently due to high decomposition rate of organic pollutants. In this thesis, TiO2 nanoparticles were synthesized via sol-gel method and were coated on cotton and jute fiber separately; besides, the impregnated fibers were heat treated to eliminate cellulose. Titanium tetraisopropoxide (TTIP) was used as a precursor and two solutions, acidic and alcoholic, were used as the primary solutions for synthesis. In acidic solution, the crystalline phase and size distribution of TiO2 nanoparticles were evaluated with changing pH.Then, the appropriate pH was chosen for coating. In... 

    Acceleration of Anaerobic Stabilization of Organic Solid Waste &Treatment of Following Sewage by a Biologic Tower

    , M.Sc. Thesis Sharif University of Technology Hassanian, Hamed (Author) ; Hashemian, Jamaleddin (Supervisor) ; Nazari Alavi, Alireza (Supervisor)
    Abstract
    In this project, function of anaerobic digestion of organic waste in liquid phase and treating the following sewage in biologic tower(trickling filter) has been investigated in an experimental process. Solid waste were supplied from sharif university restaurant and after weighting and classification is added to tanks which filled by 40% sludge and 60% water. For controlling the function of biologic tower, a control reactor were used. Retention time for digestion of solid waste is 40 day. First solid loading was 500g and 75g organic waste in main & control reactor equal to 5(kg solid waste)/( m^3.reactor.day) 1.3(kg TS)/( m^3.reactor.day) and were doubled in second loading. It seems that... 

    Enhancement of Alkaline Protease Production Using Process Factors

    , M.Sc. Thesis Sharif University of Technology Daliri, Zeinab (Author) ; Roostaazad, Reza (Supervisor)
    Abstract
    In this research, we have studied optimization of culture medium and process factors for high alkaline protease production from Bacillus subtilis ATCC 6633 for detergent usage. Five parameter soy bean meal, initial pH, agitation rate, MgSO4, CaCl2 were selected for more studies. At first, one-factor-at-a-time method was applied to investigate effect of each factor separately. Then, optimum condition for maximum protease production was achieved using Minitab software Box-benhnken procedure. According to results, high protease production was seen in soy bean meal, 35 (g/L); MgSO4, 1 (g/L); CaCl2 , 1.5 (g/L); initial pH, 7; agitation rate, 150; inoculum ratio, 12% (v/v). The activity of the... 

    Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Vol. 301, issue. 2 , 2014 , pp. 341-350 ; ISSN: 02365731 Rashidi, A ; Roosta-Azad, R ; Safdari, S. J ; Sharif University of Technology
    Abstract
    In this study the bioleaching of a low-grade uranium ore containing 480 ppm uranium has been reported. The studies involved extraction of uranium using Acidithiobacillus ferrooxidans derived from the uranium mine samples. The maximum specific growth rate (μ max) and doubling time (t d) were obtained 0.08 h-1 and 8.66 h, respectively. Parameters such as Fe2+ concentration, particle size, temperature and pH were optimized. The effect of pulp density (PD) was also studied. Maximum uranium bio-dissolution of 100 ± 5 % was achieved under the conditions of pH 2.0, 5 % PD and 35 °C in 48 h with the particles of d 80 = 100 μm. The optimum concentration of supplementary Fe2+ was dependent to the PD.... 

    An efficient approach to cathode operational parameters optimization for microbial fuel cell using response surface methodology

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , 2014 Hosseinpour, M ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Abstract
    Background: In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell were determined by using Response Surface Methodology (RSM) with a central composite design to maximize power density and COD removal. Methods: The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell. Results: Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal conditions (pH of 7, buffer concentration... 

    Rapid removal of heavy metal ions from aqueous solutions by low cost adsorbents

    , Article International Journal of Global Environmental Issues ; Volume 12, Issue 2-4 , 2012 , Pages 318-331 ; 14666650 (ISSN) Ahmadpour, A ; Rohani Bastami, T ; Tahmasbi, M ; Zabihi, M ; Sharif University of Technology
    Interscience  2012
    Abstract
    In the present investigation, different agricultural solid wastes namely: eggplant hull (EH), almond green hull (AGH), and walnut shell (WS), that are introduced as low cost adsorbents, were used for the removal of heavy metals (cobalt, strontium and mercury ions) from aqueous solutions. Activation process and/or chemical treatments using H 2O 2 and NH 3 were performed on these raw materials to increase their adsorption performances. The effectiveness of these adsorbents was studied in batch adsorption mode under a variety of experimental conditions such as: different chemical treatments, various amounts of adsorbents, initial metal-ion concentrations, pH of solutions, contact times, and... 

    Chitosan based supramolecular polypseudorotaxane as a pH-responsive polymer and their hybridization with mesoporous silica-coated magnetic graphene oxide for triggered anticancer drug delivery

    , Article Polymer (United Kingdom) ; Volume 76 , October , 2015 , Pages 52-61 ; 00323861 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Jokar, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Chitosan based polyseudorotaxane was designed as a pH-responsive supramolecular polymeric shell around the mesoporous silica-coated magnetic graphene oxide (Fe3O4@GO@mSiO2). It was used for doxorubicin delivery at cancerous tissue in a controlled manner. The core-shell nanocarrier was formed due to electrostatic interaction between chitosan and carboxylated surface of Fe3O4@GO@mSiO2. The maximum release occurred at pH 5.5 (pH of endosomes) because the shell collapsed at this pH. The drug nanocarrier has potential application in tumor therapy due to good pH-sensitive behavior, improved solubility and high colloidal stability in... 

    Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models

    , Article Chemical Engineering Science ; Volume 129 , 2015 , Pages 223-231 ; 00092509 (ISSN) Khani, F ; Haeri, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Representing nonlinear systems by linear models along with structured or unstructured uncertainties and applying robust control strategies could reduce the computational complexity in comparison with implementing the nonlinear model predictive controllers. In this paper design of robust model predictive controllers which are based on special classes of nonlinear systems representations called Wiener and Hammerstein are presented. The proposed algorithms approximate the nonlinear systems by uncertain linear models and reduce online the computational demands in the control implementation. The advantages of the proposed approaches are illustrated by two examples