Loading...
Search for: phase-interfaces
0.008 seconds

    Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    , Article Materials Science and Engineering A ; Volume 527, Issue 4-5 , 2010 , Pages 917-926 ; 09215093 (ISSN) Shojaei, A ; Faghihi, M ; Sharif University of Technology
    Abstract
    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed... 

    Interface formation and bond strength in 3Y-TZP/Cr composite bilayers produced by sinter-joining

    , Article Materials Science and Engineering A ; Volume 527, Issue 3 , 2010 , Pages 449-453 ; 09215093 (ISSN) Dourandish, M ; Simchi, A ; Hokamoto, K ; Tanaka, S ; Sharif University of Technology
    Abstract
    The mechanism of interface formation during sinter-joining of nanostructured yttria stabilized zirconia (27 nm) compacts with chromium powder was investigated. The effect of sintering atmosphere, i.e. argon or vacuum, was studied. Microstructural evaluation and phase formation was examined by scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and micro-focused X-ray diffraction (MFXRD) methods. It is shown that spreading and evaporation-condensation mechanisms are responsible for the interface formation. An improved joint shear-strength was obtained after sintering in vacuum (74 MPa) compared with argon (41 MPa). The result of MFXRD indicated formation of Cr-island at... 

    Relationship between wetting properties and macroscale hydrodynamics during forced gravity drainage and secondary waterflood

    , Article Petroleum Science and Technology ; Volume 28, Issue 8 , 2010 , Pages 804-815 ; 10916466 (ISSN) Rostami, B ; Kharrat, R ; Ghotbi, C ; Alipour Tabrizy, V ; Sharif University of Technology
    Abstract
    In order to relate the wetting properties at the pore scale to the macroscale prevailing forces, a series of experiments was performed in vertical porous media under forced gas invasion at various wettability conditions with partially spreading oil. To describe the dynamics of oil recovery in a three-phase flow condition, the downward gas flood experiments were continued by water injection from the bottom. Experimental results obtained in situations where the magnitudes of viscous, capillary, and gravity forces are comparable. We study the transition from flow configurations where the interface is stable with respect to viscous instability to flow configurations where viscous fingering... 

    Co-sintering of M2/17-4PH powders for fabrication of functional graded composite layers

    , Article Journal of Composite Materials ; Volume 44, Issue 4 , 2010 , Pages 417-435 ; 00219983 (ISSN) Firouzdor, V ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    Stepwise-graded composite layer of M2 tool stel and 17-4PH stainless steel was fabricated by a simple powder layering technique and the isothermal and nonisothermal sintering response of the bilayer were examined. It was shown that the materials exhibit poor compatibility during co-sintering, i.e., the amount of mismatch shrinkage is significant. An improved compatibility was obtained by adding 0.2 wt% B to the stainless steel powder. Formation of relatively dense layer at the bonding zone indicated an enhanced densification rate at the interface. Microstructural studies showed formation of a ferritic interface in M2/17-4PH composite and elongated grains with an intergranular boride phase... 

    Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 41, Issue 1 , 2010 , Pages 233-241 ; 10735623 (ISSN) Simchi, A ; Petzoldt, F ; Sharif University of Technology
    Abstract
    Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (>4 pct) is developed in the temperature range of 1080 °C to 1350 °C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the mismatch strain to <2 pct. Meanwhile, WC is decomposed at the contact area and the diffusion of C and Co into the iron lattice results in the formation of a liquid and MC and M6C... 

    Near-optimal trajectories to manage landing sequence in the vicinity of controlled aerodromes

    , Article Journal of Aircraft ; Volume 47, Issue 1 , 2010 , Pages 129-140 ; 00218669 (ISSN) Malaek, S. M ; Nabavi, S. Y ; Sharif University of Technology
    Abstract
    A comprehensive approach is proposed to manage landing sequences and their associated trajectories for an arbitrary number of aircraft in the vicinity of a controlled aerodrome. The current approach, similar to that of "first come, first served," could consider different types of priorities as well as emergencies. The approach is especially useful to combine unstructured free-flight trajectories with structured ones during the approach phase of the flight A comprehensive cost function considers the relative size of all aircraft together with their relative speeds and flight directions. This helps optimize the amount of fuel consumption while respecting separation minima. Resulting... 

    Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes

    , Article Desalination ; Volume 397 , 2016 , Pages 30-37 ; 00119164 (ISSN) Behnam, P ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier 
    Abstract
    In this paper, the performance of a novel HDH solar desalination system equipped with a combination of heat pipe (HP), evacuated tube collector (ETC) and air bubble column humidifier is experimentally investigated. This novel HDH system uses advantages of ETC-HP as a highly efficient thermal absorption and conductor device, and at the same time employs the advantages of an air bubble column humidifier, i.e. high interface area and effective mixing in order to heat the water and humidify the air, respectively. The effects of various parameters including incoming air flow rate into the humidifier, initial depth of water in the humidifier, and adding fluids such as oil and water in the space... 

    Effects of elastic contributions on the evolution of nano-structure Al3Sc phase: A phase-field study

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1539-1547 ; 10263098 (ISSN) Ebrahimi, Z ; Ebrahimi, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    A micromechanical phase-field model is utilized to study the evolution of nanostructure Al3Sc phase in Al-Sc alloy. We study the formation of Al3Sc precipitates in an Al-Sc alloy by using an elastic phase-field model. Since the precipitates of Al3Sc phase are fully coherent with the Al matrix, the elastic energy will have an inuence on the resulting morphology. We have studied the effects of elastic strain energies on shape evolution of Al3Sc phase, numerically. The simulated nano-structures evolve from spherical to cubic shapes. The equilibrium shape of the coherent Al3Sc phase is found to be determined by minimizing the sum of the elastic and interfacial energies through the phase-field... 

    Nanostructured particles for controlled polymer release in enhanced oil recovery

    , Article Energy Technology ; Volume 4, Issue 9 , 2016 , Pages 1035-1046 ; 21944288 (ISSN) Tamsilian, Y ; Ramazani S., A ; Shaban, M ; Ayatollahi, S ; de la Cal, J. C ; Sheng, J. J ; Tomovska, R ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    With the decline in oil discoveries over recent decades, it is believed that enhanced oil recovery (EOR) technologies will play a key role to meet energy demand in the coming years. Polymer flooding is used commonly worldwide as an EOR process. In this work, we propose the synthesis of protected polyacrylamide (PAM) nanoparticles (PPNs) with a hydrophobic polystyrene (PSt) shell by one-pot two-step inverse emulsion polymerization, in which the PSt shell was created by surface polymerization. The shell protects the active PAM chains from premature degradation caused by the harsh environment in the reservoirs, controls the release of the chains as rheological modifiers, and additionally, it... 

    The level set modeling of droplet dynamic in fluid-fluid interaction

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Mazaheri, I ; Dehkordi, A. M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, we present a level set method to simulate steady and unsteady mass transfer from a single droplet moving in a second phase fluid under buoyant force. We initially use level set to determine the interface between the two phases, where the shape of drop forms. Next, we extend this method to solve a unique mass transfer equation for the entire solution domain without considering the discontinuity appeared at the interface. We use a finite element method incorporated with the characteristic-based split (CBS) algorithm to implement axi-symmetric mass transfer equations on a stationary Eulerian grid. Of course, the convection-diffusion modeling of mass transfer is different from the... 

    Formation mechanism of bead-chain-like ZnO nanostructures from oriented attachment of Zn/ZnO nanocomposites prepared via DC arc discharge in liquid

    , Article Materials Science in Semiconductor Processing ; Volume 72 , 2017 , Pages 128-133 ; 13698001 (ISSN) Ziashahabi, A ; Poursalehi, R ; Naseri, N ; Sharif University of Technology
    Abstract
    Bead-chain-like ZnO nanoparticles (NPs) formed in colloidal solution from oriented attachment (OA) of spherical nanoparticles. Arc discharge in liquid is a cost-effective method for quick mass production of nanostructured materials without considerable environmental footprints. Applying voltage across two zinc rods as electrodes, which were immersed in water cause explosion of electrodes and plasma generation. Zn/ZnO nanocomposites produced by interaction of different active species in high-pressure and high-temperature plasma at the solid-liquid interface. Different sized nanoparticles with diameters of 26, 35, 40 and 60 nm at applied discharge currents of 150, 100, 50 and 20 A... 

    Effect of CO2 and natural surfactant of crude oil on the dynamic interfacial tensions during carbonated water flooding: experimental and modeling investigation

    , Article Journal of Petroleum Science and Engineering ; Volume 159 , 2017 , Pages 58-67 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Carbonated water has been recently proposed as an enhanced oil recovery method for crude oil reservoirs. Interfacial tension (IFT) plays a crucial rule on the displacement of trapped oil ganglia in the porous media. This investigation is designed to systematically assess the dynamic interfacial tension (DIFT) of two different types of crude oils with carbonated water (CW). In addition, the measured experimental data were applied into specified models. The DIFT behavior of acidic and non-acidic crude oil samples/CW and deionized water (DW) are also compared to find the effect of dissolved carbon dioxide in water on IFT. At the next stage, DIFT of all the results were used through three... 

    Calcium chloride adsorption at liquid-liquid interfaces: A molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 527 , 2017 , Pages 70-80 ; 09277757 (ISSN) Khiabani, N. P ; Bahramian, A ; Chen, P ; Pourafshary, P ; Goddard, W.A., III ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    We carried out molecular dynamics simulations (MD) to investigate the adsorption of calcium chloride (CaCl2) at n-hexane-water interfaces. We also measured the interfacial tensions (IFT) of the selected systems making use of the pendant-drop method. The histograms of hexane, water, and the ions indicate an electrical double layer (EDL) near the interface. The trend of the EDL indicates that chloride anions intend to adsorb to the interface more intrinsically than calcium cations. The measured interfacial width of the n-hexane-water interfaces decreases with the salt concentration. The average densities of the interfacial and bulk aqueous solutions demonstrate density heterogeneity in the... 

    Simplified model for polyurethane foaming in porous media

    , Article International Journal of Numerical Methods for Heat and Fluid Flow ; Volume 27, Issue 1 , 2017 , Pages 142-155 ; 09615539 (ISSN) Sadrhosseini, H ; Bazkhane, S ; Sharif University of Technology
    Emerald Group Publishing Ltd  2017
    Abstract
    Purpose - The purpose of the study is to present a simplified model to replace the complicated foaming simulations for investigating the liquid polyurethane behavior just before solidification. Design/methodology/approach - This model is inspired from the traveling heater method of crystallization because of the low injection velocity. Besides, the heat generated during the reaction is considered as a heat source function in the energy equation. Findings - Various distributions of the heat generation function inside the geometry have been studied to choose the most realistic one. Effect of parameters such as the soil material and porosity on the temperature distribution and flow field are... 

    How important is the liquid bulk viscosity effect on the dynamics of a single cavitation bubble?

    , Article Ultrasonics Sonochemistry ; Volume 49 , 2018 , Pages 47-52 ; 13504177 (ISSN) Nazari Mahroo, H ; Pasandideh, K ; Navid, H. A ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    The influence of liquid bulk viscosity on the dynamics of a single cavitation bubble is numerically studied via Gilmore model with a new modified boundary condition at bubble interface. In order to more accurately describe the interior gas thermodynamics, a hydrochemical model is used. The numerical results for an argon bubble in water and aqueous H2SO4 show that including the liquid bulk viscosity slightly affects the bubble dynamics in collapse phase. This effect becomes significant only at high ultrasonic amplitudes and high viscosities. Moreover, the maximum pressure value inside the bubble is much more influenced than the maximum temperature. This finding lends support to results of... 

    On the phase field modeling of crack growth and analytical treatment on the parameters

    , Article Continuum Mechanics and Thermodynamics ; 2018 , Pages 1-18 ; 09351175 (ISSN) Farrahi, G. H ; Javanbakht, M ; Jafarzadeh, H ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    A thermodynamically consistent phase field model for crack propagation is analyzed. The thermodynamic driving force for the crack propagation is derived based on the laws of thermodynamics. The Helmholtz free energy satisfies the thermodynamic equilibrium and instability conditions for the crack propagation. Analytical solutions for the Ginzburg–Landau equation including the surface profile and the estimation of the kinetic coefficient are found. It is shown how kinetic coefficient affects the local stress field. The local critical stress for the crack propagation is calibrated with the theoretical strength which gives the value of the crack surface width. The finite element method is... 

    Thermal optimization of the continuous casting process using distributed parameter identification approach—controlling the curvature of solid-liquid interface

    , Article International Journal of Advanced Manufacturing Technology ; Volume 94, Issue 1-4 , 2018 , Pages 1101-1118 ; 02683768 (ISSN) Tavakoli, R ; Sharif University of Technology
    Springer London  2018
    Abstract
    Thermal optimization of the vertical continuous casting process is considered in the present study. The goal is to find the optimal distribution of the temperature and interfacial heat transfer coefficients corresponding to the primary and secondary cooling systems, in addition to the pulling speed, such that the solidification along the main axis of strand approaches to the unidirectional solidification mode. Unlike many thermal optimization of phase change problems in which the desirable (target) temperature, temperature gradient, or interface position are assumed to be a priori known, a desirable shape feature of the freezing interface (not its explicit position) is assumed to be known in... 

    The effects of pH, acidity, asphaltene and resin fraction on crude oil/water interfacial tension

    , Article Journal of Petroleum Science and Engineering ; Volume 162 , 2018 , Pages 341-347 ; 09204105 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A basic understanding of the activities of indigenous surfactants of crude oil at the water/oil interface as a function of aqueous phase pH can give us a better insight into the alkaline enhanced oil recovery processes. The present study aimed to elucidate the effect of salinity and crude oil type, specifically the influence of resin and asphaltene molecules during alkaline flooding through interfacial tension (IFT) measurements via pendant drop and spinning techniques. Several model oils containing asphaltene and resin fractions were prepared and their IFTs were compared with those of the original crude oils. Moreover, the elemental analyses of asphaltene and resin fractions were performed,... 

    CFD-DEM modeling of cuttings transport in underbalanced drilling considering aerated mud effects and downhole conditions

    , Article Journal of Petroleum Science and Engineering ; Volume 160 , 2018 , Pages 229-246 ; 09204105 (ISSN) Akhshik, S ; Rajabi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This paper presents a developed CFD (Computational fluid dynamics)-DEM (Discrete elements method) model to study the cuttings transportation in aerated mud drilling process for inclined annuli at downhole conditions. The model is conducted to determine the effects of liquid flow rate, air injection rate, annulus inclination angle, elevated temperature and pressure on the cuttings transport efficiency. The motion of the fluid is computed using CFD based approach with gas–liquid interface capturing provided by the volume-of-fluid (VOF) method. The dynamics of cutting phase is studied by DEM using soft sphere approach in order to take into account the particle collision phenomenon. The... 

    Characterization of liquid bridge formed during gas-oil gravity drainage in fractured porous media

    , Article 16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018, 3 September 2018 through 6 September 2018 ; 2018 ; 9789462822603 (ISBN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Shoushtari, A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2018
    Abstract
    Gas-oil gravity drainage that takes place in the gas-invaded zone of fractured reservoirs is the main production mechanism of gas-cap drive fractured reservoirs as well as fractured reservoirs subjected to gas injection. Interaction of neighboring matrix blocks through reinfiltration and capillary continuity effects controls the efficiency of gravity drainage. Existence of capillary continuity between adjacent matrix block is likely to increase the ultimate recovery significantly. Liquid bridge formed in fractures has a significant role in maintaining the capillary continuity between two neighboring matrix blocks. The degree of capillary continuity is proportional to capillary pressure in...