Loading...
Search for: phases-separation
0.009 seconds

    Porous eco–friendly fibers for on–line micro solid–phase extraction of nonsteroidal anti–inflammatory drugs from urine and plasma samples

    , Article Journal of Chromatography A ; Volume 1574 , 2018 , Pages 18-26 ; 00219673 (ISSN) Golzari Aqda, T ; Behkami, S ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, cellulose acetate (CA) fibers were prepared using different solvent systems in electrospinning. The recorded scanning electron microscopy micrographs indicated that the morphology of the prepared fibers is closely associated with the type of electrospinning solvents. The prepared CA fibers were used as an extractive phase for on–line micro–solid phase extraction (μ-SPE) of nonsteroidal–inflammatory drugs (NSAIDs) in biological samples pursued by HPLC–UV determination. Work conducted on this research ascertained that the use of dichloromethane:acetone (3:1, v/v) solvent system in the CA dissolution for electrospinning, leads to the formation of porous ribbon–like fibers and... 

    TPU/graphene nanocomposites: effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane

    , Article Polymer ; Volume 148 , 18 July , 2018 , Pages 169-180 ; 00323861 (ISSN) Razeghi, M ; Pircheraghi, G ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Graphene nanoplatelets with different surface functional groups and polarity were prepared by Hummer's method and electrochemical exfoliation of graphite in two aqueous acids. The XRD, FTIR and sedimentation tests performed to characterize the polarity of the prepared graphenes. The highest polarity was associated with the sample prepared by Hummer's method and the sample synthesized by electrochemical exfoliation in nitric acid medium showed the moderate polarity. Meanwhile, the sample prepared in sulfuric acid medium showed the lowest polarity. Then thermoplastic polyurethane (TPU)/graphene nanocomposite films were fabricated with solvent exchange method. While the dispersion state and... 

    Photo-curable acrylate polyurethane as efficient composite membrane for CO2 separation

    , Article Polymer ; Volume 149 , 2018 , Pages 178-191 ; 00323861 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The current investigation was to present composite membranes with strong interfacial adhesion between top polymeric selective layer and the bottom micro-porous support layer with appropriate gas permeation behavior and practically suitable processing characteristics. To this end, a series of acrylate-terminated polyurethanes (APUs) based on poly (ethylene glycol) (PEG) with different molecular weights (Mn) of 600, 1000, 1500, 2000 and 4000 g/mol, toluene diisocyanate (TDI), and 2-hydroxyethyl methacrylate (HEMA) were synthesized. Composite membranes were prepared with UV-curable acrylate-terminated polyurethane/acrylate diluent (APUAs) as selective layer and polyester/polysulfone (PS/PSF) as... 

    Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 82 , 2018 , Pages 265-276 ; 09284931 (ISSN) Johari, N ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    It is known that Fluoride ions strongly affect bone mineralization and formation. In the present study, the engineered bone tissue scaffolds are fabricated using silk fibroin (SF) and flouridated TiO2 nanoparticles. TiO2 nanoparticles are modified by fluoride ions, and different levels (0, 5, 10, 15 and 20 wt%) of the fluoridated TiO2 nanoparticles (TiO2-F) were subsequently added to the SF matrix through phase separation method to prepare silk fibroin/flouridated TiO2 nanocomposite scaffolds (SF/TiO2-F). Phase structure, functional groups, morphology and mechanical properties of the obtained scaffolds were evaluated by X-ray diffraction method (XRD), Fourier transform infrared spectroscopy... 

    Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

    , Article Critical Reviews in Biotechnology ; Volume 38, Issue 1 , 2018 , Pages 47-67 ; 07388551 (ISSN) Malekzad, H ; Mirshekari, H ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Baniasadi, F ; Sharifi Aghdam, M ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble... 

    In situ preparation and characterization of biocompatible acrylate-terminated polyurethane containing chemically modified multiwalled carbon nanotube

    , Article Polymer Composites ; Volume 39 , April , 2018 , Pages E297-E307 ; 02728397 (ISSN) Alishiri, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Biodegradable acrylate-terminated polyurethane/acrylate (APUA) filled with 2-hydroxyethyl methacrylate functionalized carbon nanotube (CNT-HEMA) was prepared by in situ free radical crosslinking. CNT-HEMA enhanced crystallinity of soft domain and caused more phase separation between hard and soft domains of APUA. Tensile testing showed a considerable improvement in elastic modulus (∼160%) and tensile strength (∼30%) at 1 wt% loading. Morphological features of APUA induced by nanotubes were found to be dominant on mechanical properties of APUA/CNT-HEMA. CNT-HEMA increased water contact angle of APUA; however, wettability of APUA/CNT-HEMA maintained in acceptable range for biomedical... 

    Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor

    , Article Bioresource Technology ; Volume 100, Issue 5 , 2009 , Pages 1740-1745 ; 09608524 (ISSN) Ghaniyari Benis, S ; Borja, R ; Monemian, S. A ; Goodarzi, V ; Sharif University of Technology
    2009
    Abstract
    A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day,... 

    Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites

    , Article Journal of Polymers and the Environment ; Volume 27, Issue 12 , 2019 , Pages 2886-2894 ; 15662543 (ISSN) Torabi, H ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this study, EVAc/PLA/organo clay nanocomposites were prepared via solution mixing method. The SEM images were used to investigate the morphology of nanocomposites revealing no phase separation or agglomeration of disperse phase in EVAc/PLA blends and nanocomposites. SAXS spectra confirmed the intercalated morphology of nanocomposites. Soil burial test were carried out and the rate of degradation of the samples were measured indirectly. Oxygen gas permeability of EVAc was slightly decreased by adding PLA to the matrix, when small loads of clay caused dramatic improvement in barrier properties. Melt rheological frequency sweep test illustrated the compatibility of EVAc with low contents of... 

    Spin and charge fluctuations in a one-dimensional lattice with long-range interactions

    , Article Physica B: Condensed Matter ; Volume 571 , 2019 , Pages 204-209 ; 09214526 (ISSN) Talebi, A. H ; Davoudi, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    We study the competition between spin and charge fluctuations of the extended Hubbard model with on-site and dipole-dipole interactions in a one-dimensional lattice. Using the extended two-particle self consistent (ETPSC) method, we find the corresponding expressions for spin and charge response functions. In this approach, the irreducible spin and charge vertices are a function of inter-particle distance (r) and wave-number (q). This theory allows us to determine the crossover temperatures and the dominant instability as a function of U and V. The phase diagrams are obtained for several effective particle densities: n = 0.5, n = 1 and n = 4/3. Each phase diagram (U − V − T space)... 

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Generic extraction medium: From highly polar to non-polar simultaneous determination

    , Article Analytica Chimica Acta ; Volume 1066 , 2019 , Pages 1-12 ; 00032670 (ISSN) Zeinali, S ; Khalilzadeh, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Sample preparation for non-target analysis is challenging due to the difficulty in the extraction of polar and non-polar analytes simultaneously. Most commercial solid sorbents lack the proper comprehensiveness for extraction of analytes with different physiochemical properties. A possible key is the combination of hydrophobic polymer and hydrophilic surface functional groups in solid based extraction methods in order to generate the susceptibility for retaining both polar and non-polar analytes. To pursue this goal, in this study, four polar groups including [sbnd]NH 2 , [sbnd]NO 2 , [sbnd]COOH, and [sbnd]COCH 3 were chemically bound to Amberlite XAD-4 substrate in order to prepare a... 

    Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples

    , Article Journal of Chromatography A ; Volume 1591 , 2019 , Pages 7-14 ; 00219673 (ISSN) Golzari Aqda, T ; Behkami, S ; Raoofi, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a method was described for the extraction of three antibiotic residues from cow milk samples using a graphene oxide–starch–based nanocomposite. The prepared nanocomposites were employed as an extractive phase for micro-solid phase extraction of antibiotics from cow milk samples. The extracted antibiotics, i.e. amoxicillin, ampicillin and cloxacillin, were subsequently analyzed by high-performance liquid chromatography–ultraviolet detection (HPLC–UV). Important variables associated with the extraction and desorption efficiency were optimized. High extraction efficiencies for the selected antibiotics were conveniently achieved using the starch–based nanocomposite as the... 

    LPG mass separation by vortex tube cascade and its economics

    , Article Applied Thermal Engineering ; Volume 148 , 2019 , Pages 1139-1147 ; 13594311 (ISSN) Majidi, D ; Alighardashi, H ; Farhadi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present experimental study, the effect of operating parameters such as inlet and outlet pressure as well as inlet temperature on the mass separation capability of vortex tubes (VTs) for a gas mixture is investigated. Specifically, concentrating heavier components of a gas mixture in the hot outlet stream is considered. Proposing a semi-empirical index from the experimental study, the simulation of different arrangements of VTs, and the effect of recycling a portion of the hot outlet stream on its mass separation performance are investigated. Moreover, the proposed separation method by VTs is economically compared with commonly used methods by distillation columns and two-phase... 

    Encapsulation of food components and bioactive ingredients and targeted release

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 1 , 2020 , Pages 1-11 Alemzadeh, I ; Hajiabbas, M ; Pakzad, H ; Sajadi Dehkordi, S ; Vossoughi, A ; Sharif University of Technology
    Materials and Energy Research Center  2020
    Abstract
    The potential utilization of encapsulation techniques in food, pharmaceutical and agricultural products preparation, presents a new alternative for complementary technologies such as targeting delivery vehicles and carriers for active food ingredients. Encapsulation could be accomplished by different techniques like: simple or complex coacervation, emulsification technique, phase separation, spray drying, spray chilling or spray cooling, extrusion coating, freeze drying, fluidized-bed coating, liposomal entrapment, centrifugal suspension separation, co-crystallization and molecular inclusion complexation. Encapsulation is a method by which one bioactive material or mixture of materials is... 

    Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater

    , Article Journal of Chromatography A ; Volume 1631 , 2020 Asgari, S ; Bagheri, H ; Es-haghi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A cryogel–based semi–interpenetrating polymer network (Cryo–SIPN) was prepared in which conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) were formed within the super porous network of acrylic acid cryogel. For completion of cryo-polymerization, all the constituent solutions were severely mixed and placed into the plastic straws and kept at -20°C and then the synthesized cyrogels were cut into the 1-cm length and freeze dried after washing with water. The Cryo–SIPN polymeric composite was applied in micro solid phase extraction (µSPE) of some selected antibiotic residues from various samples. The µSPE method combined with a high performance liquid... 

    Pectic acid–graphene oxide nanocomposite as an adsorbent in vortex-assisted dispersive solid-phase extraction for preconcentration of copper ion followed by flame atomic absorption spectrometry

    , Article Polymer Bulletin ; Volume 77, Issue 6 , 2020 , Pages 2821-2836 Eftekhari, A ; Shakerian, M ; Majeed, H. J ; Eftekhari, M ; Rezazadeh, N ; Sharif University of Technology
    Springer  2020
    Abstract
    An efficient, green, novel and rapid vortex-assisted dispersive solid-phase extraction (VADSPE) technique was used for the preconcentration and determination of trace levels of Cu2+ followed by flame atomic absorption spectrometry. Graphene oxide (GO) was synthesized from graphite and then modified by pectic acid (poly-d-galacturonic acid, PA) to synthesize the pectic acid–graphene oxide (PA-GO) nanocomposite. The Fourier transform infrared spectrophotometry, field emission scanning electron microcopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analysis were used to characterize the synthesized GO-PA nanocomposite. By using VADSPE technique, PA-GO was used as an adsorbent for... 

    Controlling the microscale separation of immiscible liquids using geometry: A computational fluid dynamics study

    , Article Chemical Engineering Science ; Volume 220 , 2020 Kamrani, S ; Mohammadi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, we numerically determined the performance of a microscale separator comprising a lateral and a main channel to separate a two-phase flow. It was aimed to conduct continuous phase through the lateral channel and dispersed phase through the main channel. The continuous and dispersed phases were modeled as incompressible Newtonian fluids with the corresponding interface tracked by the phase-field model. The dynamics, including pressure fluctuations in the separator, were further examined. It was mechanistically demonstrated how the geometry of the separator modulates the phase separation. Further examined were the influences of various geometrical parameters on the performance of... 

    Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 3 , 15 January , 2020 Molavi, H ; Shojaei, A ; Mousavi, S. A ; Ahmadi, S. A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    In this study, the effects of the type and content of reactive diluents on the permeation/separation of carbon dioxide/nitrogen (CO2/N2) through acrylate-terminated polyurethane (APU)-acrylate/acrylic diluent (APUA) composite membranes was investigated. A series of APUs based on poly(ethylene glycol) (PEG)-1000 g mol−1, toluene diisocyanate, and 2-hydroxyethyl methacrylate was synthesized and then diluted with several reactive diluents. The results obtained from differential scanning calorimetry (DSC) and Fourier transform infrared analyses showed that the microphase interference of hard and soft segments increased with increasing reactive diluent content. Furthermore, with increasing alkene... 

    In situ synthesized TiO2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation

    , Article Materials Science and Engineering C ; Volume 114 , May , 2020 Kianpour, G ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The in vitro endothelial response of human umbilical vein endothelial cells was investigated on a poly (caprolactone)-based polyurethane surface vs an in situ TiO2-polyurethane nanocomposite surface, which has been produced as scaffolds for artificial vascular graft. The in situ synthesis of TiO2 nanoparticles in polyurethane provided surface properties that facilitated cellular adhesion, cell sensing, cell probing and especially cell migration. Cells on the nanocomposite surface have elongated morphology and were able to produce more extracellular matrix. All of these advantages led to an increase in the rate of endothelialization of the nanocomposite scaffold surface vs pure polyurethane.... 

    Development of a method for analysis of Iranian damask rose oil: combination of gas chromatography-mass spectrometry with Chemometric techniques

    , Article Analytica Chimica Acta ; Volume 623, Issue 1 , 8 August , 2008 , Pages 11-21 ; 00032670 (ISSN) Jalali Heravi, M ; Parastar, H ; Sereshti, H ; Sharif University of Technology
    2008
    Abstract
    Gas chromatography-mass spectrometry (GC-MS) combined with Chemometric resolution techniques were proposed as a method for the analysis of volatile components of Iranian damask rose oil. The essential oil of damask rose was extracted using hydrodistillation method and analyzed with GC-MS in optimized conditions. A total of 70 components were identified using similarity searches between mass spectra and MS database. This number was extended to 95 components with concentrations higher than 0.01% accounting for 94.75% of the total relative content using Chemometric techniques. For the first time in this work, an approach based upon subspace comparison is used for determination of the chemical...