Loading...
Search for: photovoltaic-system
0.006 seconds

    Fabrication and Characterization of Cu2SnS3 and Cu2ZnSnS(e)4 Absorber Layers by Spray Pyrolysis Method

    , M.Sc. Thesis Sharif University of Technology Gharabeiki, Sevan (Author) ; Mahdavi, Mohammad (Supervisor)
    Abstract
    The Cu2ZnSnS(e)4 (CZTS(e)) quaternary and Cu2SnS3 (CTS) ternary componds with suitable optical and electrical properties have been considered as an emerging semiconductors for fabrication of thin-fim solar cells. So far, two technologies based on CdTe and CuInGaS(e)2 absorbers have achived efficiencies above 20%. However, these compounds contain toxic element Cd and rare elements such as In and Ga which, limited the development of these solar cells.In this research a 3-stage method was used for fabrication of CZTS(e) thin Films. In the first stage, CTS layers were deposited by spray pyrolysis method, in the second one, ZnS layers were also deposited on CTS layers by spray pyrolysis method... 

    Design and Analysis of DC-DC and DC-AC Photovoltaic Converter

    , M.Sc. Thesis Sharif University of Technology Sadeghpour, Danial (Author) ; Atarodi, Mojtaba (Supervisor) ; Zolghadri, Mohammad Reza (Supervisor)
    Abstract
    Over the past decade there has been dramatic increase in fossil fuel’s usage; As a consequence, world now faces problems such as: air pollution, climate change, global warming and ozone layer depletion. In addition, depletion of the fossil energy resources is growing as a serious issue. Renewable energy(RE) sources are the most promising solution to these problems. Global investment in clean energy was increased by 16% in 2014 and solar power is anticipated to become the world’s largest source of electricity by 2050 .The German government has planned to achieve a goal of 8 percent renewables for gross power consumption by 2050 .RE is still more expensive than traditional one and faces a... 

    Dye-sensitized solar cells based on a single layer deposition of TiO 2 from a new formulation paste and their photovoltaic performance

    , Article Solar Energy ; Volume 86, Issue 9 , 2012 , Pages 2654-2664 ; 0038092X (ISSN) Mohammadi, M. R ; Louca, R. R. M ; Fray, D. J ; Welland, M. E ; Sharif University of Technology
    Abstract
    A new strategy for enhancing the efficiency and reducing the production cost of TiO 2 solar cells by design of a new formulated TiO 2 paste with tailored crystal structure and morphology is reported. The conventional three- or four-fold layer deposition process was eliminated and replaced by a single layer deposition of TiO 2 compound. Different TiO 2 pastes with various crystal structures, morphologies and crystallite sizes were prepared by an aqueous particulate sol-gel process. Based on simultaneous differential thermal (SDT) analysis the minimum annealing temperature to obtain organic-free TiO 2 paste was determined at 400°C, being one of the lowest crystallization temperatures of TiO 2... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Partial shading detection and smooth maximum power point tracking of PV arrays under PSC

    , Article IEEE Transactions on Power Electronics ; Volume 31, Issue 9 , 2016 , Pages 6281-6292 ; 08858993 (ISSN) Ghasemi, M. A ; Mohammadian Forushani, H ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    One of the most important issues in the operation of a photovoltaic (PV) system is extracting maximum power from the PV array, especially in partial shading condition (PSC). Under PSC, P-V characteristic of PV arrays will have multiple peak points, only one of which is global maximum. Conventional maximum power point tracking (MPPT) methods are not able to extract maximum power in this condition. In this paper, a novel two-stage MPPT method is presented to overcome this drawback. In the first stage, a method is proposed to determine the occurrence of PSC, and in the second stage, using a new algorithm that is based on ramp change of the duty cycle and continuous sampling from the P-V... 

    Fast and simple open-circuit fault detection method for interleaved DC-DC converters

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 440-445 ; 9781509003754 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Ouni, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    Interleaved DC-DC boost converters are interesting choices in applications like fuel cells and photovoltaic systems. Although this converter offers low current ripple, but an open-circuit switch fault can lead to unacceptable current ripples. In this paper, a very fast and simple method is proposed to detect an open-circuit switch fault and its location. This method doesn't need any additional sensors, is efficient in CCM and DCM modes of operation, and can detect the fault in less than one switching period. Moreover, this method is suitable for implementation on an FPGA, due to the use of simple math and state machine blocks. Simulations are carried out to validate the effectiveness of this... 

    Prevention of distribution network overvoltage by adaptive droop-based active and reactive power control of PV systems

    , Article Electric Power Systems Research ; Volume 133 , 2016 , Pages 313-327 ; 03787796 (ISSN) Ghasemi, M. A ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Proliferation of grid-connected photovoltaic systems (PVSs) causes technical problems due to their variable and non-dispatchable generated power. High penetration of PVS in distribution networks can result in overvoltage in some operating conditions. Although this situation occurs rarely, it limits the installed capacity of PVS. In this paper, adaptive droop-based control algorithms are presented to regulate active and reactive power of PVS, with the objectives of loss minimization and increasing the PVS capacity installation without unallowable overvoltage. Operating voltage range of the PVS is divided into several intervals, and a specific control algorithm is presented for each of them.... 

    Three-phase quasi-Z-source inverter with constant common-mode voltage for photovoltaic application

    , Article IEEE Transactions on Industrial Electronics ; 2017 ; 02780046 (ISSN) Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Abstract
    In trasformerless grid-connected photovoltaic (PV) systems, common-mode voltage (CMV) fluctuations cause leakage current flow through the stray capacitance of the PV panels. Shoot-through (SH) states in a quasi-Z-source inverter (q-ZSI), increase the amplitude of high order harmonics of CMV. In this paper, by using the modulation technique based on odd PWM (OPWM) and minor change in the Z network of the three-phase q-ZSI, the leakage current is blocked. No extra semiconductor element is added. By the proposed technique, CMV is kept nearly constant during switching cycles. The experimental results for CMV analysis in a 1kW prototype are presented to verify the theoretical analysis. IEEE  

    Improving transparency in dye-sensitized nanostructured solar cells by optimizing nano-porous titanium dioxide photo-electrode

    , Article Journal of Materials Science: Materials in Electronics ; Volume 28, Issue 11 , 2017 , Pages 7811-7818 ; 09574522 (ISSN) Nikfarjam, A ; Mohammadpour, R ; Kasaeian, A ; Zebhi, Z ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Today’s the technology based on dye-sensitized solar cells (DSSCs) has an important role in all photovoltaic system technologies. DSSCs can generate electricity with various degrees of transparency; this makes it suitable for use in various industries, especially in construction industry as smart windows. In fact DSSC can produce electricity and having natural light, simultaneously. It is obvious that DSSCs need to absorb solar radiation as much as possible. Since, the effective use of all incident lights leads to an increase in cell efficiency and this increase in efficiency is related to the amount of dye adsorbed on the surface of nanostructured electrode, so higher amount of dye for... 

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; Volume 90, Issue 1 , 2017 , Pages 53-67 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the... 

    Practical battery size optimization of a PV system by considering individual customer damage function

    , Article Renewable and Sustainable Energy Reviews ; Volume 67 , 2017 , Pages 36-50 ; 13640321 (ISSN) Mehrabankhomartash, M ; Rayati, M ; Sheikhi, A ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Today, energy crises attracted many researchers’ attention to renewable energy technologies especially photovoltaic (PV) systems. The main challenge of PV systems is unpredictable nature of solar power generation. To overcome this challenge, a storage system is integrated which reduces demand reliance on electricity grid and uses excess energy that solar panels produce. As investment cost of the storage system is considerable, finding an optimal technology, size, and configuration are crucial. In this paper, the optimal battery system is excluded from existing PV plant installing in a commercial building located in Mashhad/Iran. Here, the sizing procedure is based on a financial evaluation... 

    A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design

    , Article Renewable Energy ; Volume 113 , 2017 , Pages 822-834 ; 09601481 (ISSN) Mohsenzadeh, M ; Shafii, M. B ; Jafari mosleh, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The use of solar energy concentration systems for achieving performance enhancements in the Photovoltaic/thermal hybrid solar systems and reduction of initial costs is an idea that has been studied for years. In this article a new structure for parabolic trough photovoltaic/thermal collector is proposed and its thermal and electrical performances are experimentally investigated. The receiver of this concentrator contains a triangular channel with an outer surface covered with photovoltaic cells and thermoelectric modules with a specific arrangement so that in addition to absorbing heat, a larger portion of the solar radiation is directly converted to electricity. Hence, the performance of... 

    Experimental investigation of the effects of corona wind on the performance of an air-cooled PV/T

    , Article Renewable Energy ; Volume 127 , 2018 , Pages 284-297 ; 09601481 (ISSN) Golzari, S ; Kasaeian, A ; Amidpour, M ; Nasirivatan, S ; Mousavi, S ; Sharif University of Technology
    Abstract
    In the present study, enhancing the heat transfer is experimentally investigated by the electro-hydrodynamics (EHD) through a single-pass air-cooled PV/T (Photovoltaic/Thermal System). The corona wind increases the heat transfer coefficient by producing a secondary flow and vortex, and consequently, increases the PV/T system efficiency. The effects of the corona wind are studied by changing the voltage values and the flow rates in the air channel. The results show that the corona wind is effective on enhancing the system performance; so that the heat transfer coefficient increases by 65% in natural flow regime by applying 11 kV voltage in the pilot setup. Totally, the thermal efficiency of... 

    A modulation method for leakage current reduction in a three-phase grid-tie quasi-Z-source inverter

    , Article IEEE Transactions on Power Electronics ; 2018 ; 08858993 (ISSN) Noroozi, N ; Yaghoubi, M ; Zolghadri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The leakage current originated from the fluctuations of the common-mode voltage (CMV) is an issue in a transformerless grid-connected photovoltaic (PV) system. In this paper, a modified space vector modulation based on the Fourier transform analysis is proposed to reduce the leakage current in a three-phase quasi-Z-source inverter (qZSI). The CMV harmonic content in a qZSI contains low and high-frequency harmonics which cause safety and EMI problems respectively. By implementing the proposed modulation in a three-phase qZSI, the low-frequency harmonics of the CMV are mainly reduced. The distribution of the high-frequency harmonics is also modified in a way they can be simply filtered.... 

    Three-Phase quasi-Z-source inverter with constant common-mode voltage for photovoltaic application

    , Article IEEE Transactions on Industrial Electronics ; Volume 65, Issue 6 , 2018 , Pages 4790-4798 ; 02780046 (ISSN) Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In trasformerless grid-connected photovoltaic (PV) systems, common-mode voltage (CMV) fluctuations cause leakage current flow through the stray capacitance of the PV panels. Shoot-through states in a quasi-Z-source inverter (q-ZSI) increase the amplitude of high-order harmonics of CMV. In this paper, by using the modulation technique based on odd pulse width modulation and minor change in the Z network of the three-phase q-ZSI, the leakage current is blocked. No extra semiconductor element is added. By the proposed technique, CMV is kept nearly constant during switching cycles. The experimental results for CMV analysis in a 1kW prototype are presented to verify the theoretical analysis. ©... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Impact of solar energy on the integrated operation of electricity-gas grids

    , Article Energy ; Volume 183 , 2019 , Pages 844-853 ; 03605442 (ISSN) Badakhshan, S ; Hajibandeh, N ; Shafie khah, M ; Catalão, J. P. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Photovoltaic energy is one of the clean and efficient energies which has been developing quickly in the last years. As the penetration of solar plants is increasing in the electricity network, new problems have arisen in network operation. This paper models a high penetration factor of solar energy in the electricity network and investigates the impact of solar energy growth on both the generation schedule of different power plants and in the natural gas transmission network. Fuel management of gas power plants is modeled through simulation of the natural gas transmission network. To this end, an increase in the penetration of solar energy in the electricity network inevitably leads to a... 

    A modulation method for leakage current reduction in a three-phase grid-tie quasi-z-source inverter

    , Article IEEE Transactions on Power Electronics ; Volume 34, Issue 6 , 2019 , Pages 5439-5450 ; 08858993 (ISSN) Noroozi, N ; Yaghoubi, M ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The leakage current originated from the fluctuations of the common-mode voltage (CMV) is an issue in a transformerless grid-connected photovoltaic system. In this paper, a modified space vector modulation based on the Fourier transform analysis is proposed to reduce the leakage current in a three-phase quasi-Z-source inverter (qZSI). The CMV harmonic content in a qZSI contains low-and high-frequency harmonics that cause safety and electromagnetic interference problems, respectively. By implementing the proposed modulation in a three-phase qZSI, the low-frequency harmonics of the CMV are mainly reduced. The distribution of the high-frequency harmonics is also modified in a way they can be... 

    A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems

    , Article Renewable Energy ; Volume 135 , 2019 , Pages 437-449 ; 09601481 (ISSN) Salari, A ; Hakkaki Fard, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Dust deposition on the surface of solar systems is one of the main parameters that significantly affects the performance of such systems. In this study, the effect of dust deposition density on the performance of photovoltaic modules (PV) and photovoltaic-thermal systems (PVT) is numerically investigated. Accordingly, all layers of a monocrystalline silicon PV module for both systems are simulated. Moreover, the effect of various system parameters on the performance of both clean and dusty PV module and PVT system are studied. The studied parameters included: solar radiation intensity, ambient temperature, coolant inlet temperature, and coolant inlet velocity. The obtained results indicate... 

    Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production

    , Article Renewable Energy ; 2019 , Pages 1362-1368 ; 09601481 (ISSN) Fakouriyan, S ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper addresses a low complexity and high efficient cooling system applicable on photovoltaic (PV) system leading to enhance electrical efficiency and provide preheated water. The developed system consists of a photovoltaic panel, a cooling water system establishing a uniform surface temperature, and a solar water heater. According to the proposed system characteristics, the setup is constructed based on a single mono-crystalline solar panel to absorb more solar radiation intensity and generate more electrical energy per area in compare to a poly-crystalline panel. The preheated water produced by absorbed heat from the photovoltaic is conducted to a solar water heater to satisfy...