Loading...
Search for: polymeric
0.007 seconds

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; 2018 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    A new and facile synthesis of thieno[2,3-b]indole derivatives via condensation of isocyanide and indolin-2-thiones

    , Article Synlett ; Issue 7 , 2009 , Pages 1047-1050 ; 09365214 (ISSN) Matloubi Moghaddam, F ; Saeidian, H ; Mirjafary, Z ; Taheri, S ; Kheirjou, S ; Sharif University of Technology
    2009
    Abstract
    A new one-pot synthesis of thieno[2,3-b]indole ring systems is described. Condensation of cyclohexyl isocyanide with indolin-2-thiones yielded 3-cyclohexyaminomethylene-indolin-2-thiones, which upon reaction with α-halocarbonyl compounds produced the title compounds. © Georg Thieme Verlag Stuttgart  

    Storage of Ag nanoparticles in pore-arrays of SU-8 matrix for antibacterial applications

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 13 , 2009 ; 00223727 (ISSN) Akhavan, O ; Abdolahad, M ; Asadi, R ; Sharif University of Technology
    2009
    Abstract
    Silver nanoparticles (NPs) stored in pore-arrays (pa) SU-8 photoresist layer were utilized as an antibacterial nanocomposition against E. coli bacteria. The pa-SU-8 matrix was fabricated by an optical interference lithography method resulting in small pores with a diameter of ∼50 nm and a depth of ∼100 nm. The Ag NPs were deposited on the soft polymeric matrix at different drying temperatures of 50 and 90 °C. X-ray photoelectron spectroscopy showed that the deposited silver NPs were substantially in the metallic state, independent from the drying condition. However, the concentration of the immobilized Ag NPs on the film surface increased (by a factor of 2.5) at the higher drying... 

    An alternative additive manufacturing-based joining method to make Metal/Polymer hybrid structures

    , Article Journal of Manufacturing Processes ; Volume 45 , 2019 , Pages 217-226 ; 15266125 (ISSN) Ozlati, A ; Movahedi, M ; Tamizi, M ; Tartifzadeh, Z ; Alipour, S ; https://www.sciencedirect.com/science/article/abs/pii/S1526612519302087
    Elsevier Ltd  2019
    Abstract
    Fused Deposition Modeling with Polypropylene filament was employed to make a lap joint between Polypropylene and pre-punched Al-Mg alloy sheets, in the form of bonds between the polymeric substrate and the additive part and mechanical lock between the additive part and aluminum base sheet. Effects of the joint interface area (hole diameter of 5–13 mm) and preheating of the substrates (room temperature, 50 and 90℃) were investigated on the mechanical properties of the joints. Peak load in the tensile-shear and cross-tension tests increased with enhancement of the joint interface area (up to ˜280 N and ˜160 N, respectively). Higher joint strength in the tensile-shear test compared to the... 

    Stimulus-responsive polymeric nanogels as smart drug delivery systems

    , Article Acta Biomaterialia ; Volume 92 , 2019 , Pages 1-18 ; 17427061 (ISSN) Hajebi, S ; Rabiee, N ; Bagherzadeh, M ; Ahmadi, S ; Rabiee, M ; Roghani Mamaqani, H ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Acta Materialia Inc  2019
    Abstract
    Nanogels are three-dimensional nanoscale networks formed by physically or chemically cross-linking polymers. Nanogels have been explored as drug delivery systems due to their advantageous properties, such as biocompatibility, high stability, tunable particle size, drug loading capacity, and possible modification of the surface for active targeting by attaching ligands that recognize cognate receptors on the target cells or tissues. Nanogels can be designed to be stimulus responsive, and react to internal or external stimuli such as pH, temperature, light and redox, thus resulting in the controlled release of loaded drugs. This “smart” targeting ability prevents drug accumulation in... 

    Mathematical modeling of drug release from biodegradable polymeric microneedles

    , Article Bio-Design and Manufacturing ; Volume 2, Issue 2 , 2019 , Pages 96-107 ; 20965524 (ISSN) Chavoshi, S ; Rabiee, M ; Rafizadeh, M ; Rabiee, N ; Shamsabadi, A. S ; Bagherzadeh, M ; Salarian, R ; Tahriri, M ; Tayebi, L ; Sharif University of Technology
    Springer  2019
    Abstract
    Transdermal drug delivery systems have overcome many limitations of other drug administration routes, such as injection pain and first-pass metabolism following oral route, although transdermal drug delivery systems are limited to drugs with low molecular weight. Hence, new emerging technology allowing high molecular weight drug delivery across the skin—known as ‘microneedles’—has been developed, which creates microchannels that facilitate drug delivery. In this report, drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile. Since a lot of data are available for polylactic acid-co-glycolic acid (PLGA) degradation in the literature,... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; Volume 54, Issue 5 , 2019 , Pages 4259-4276 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 134 , 2019 , Pages 679-687 ; 02632241 (ISSN) Hatamie, A ; Jalilian, P ; Rezvani, E ; Kakavand, A ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Recently, graphitic carbon nitride (g-C3N4) has attracted great interest for photo(electro)chemical applications such as sensing, solar energy exploitation, photocatalysis, and hydrogen generation. This paper presents the potential application and benefits of g-C3N4 nanolayers as a green and highly efficient electrode modifier for the detection of trace lead ions in drinking water and urban dust samples. Carbon nitride nanosheets with a thickness of ∼6 A° and lateral of 100–150 nm were prepared through high-temperature polymerization of melamine followed by sonication-assisted liquid exfoliation. A glassy carbon electrode (GCE) was modified by a thin layer of g-C3N4 through drop casting and... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    Poly(glycidyl methacrylate)-coated magnetic graphene oxide as a highly efficient nanocarrier: Preparation, characterization, and targeted DOX delivery

    , Article New Journal of Chemistry ; Volume 43, Issue 47 , 2019 , Pages 18647-18656 ; 11440546 (ISSN) Pourjavadi, A ; Kohestanian, M ; Yaghoubi, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Herein, we report the preparation of novel magnetic graphene oxide (GO) grafted with brush polymer via surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization and its application as a nanocarrier for magnetic- and pH-triggered delivery of doxorubicin anticancer drug. The RAFT agent, DDMAT, was firstly attached to the surface of magnetic GO nanosheets. The DDMAT-functionalized magnetic GO nanosheets were then used to polymerize glycidyl methacrylate (GMA) using an SI-RAFT method. Afterwards, the epoxy rings of the PGMA chains were opened with hydrazine (N2H4) moieties. The resulting nanocomposite was used as a drug carrier for doxorubicin (DOX) as an... 

    A new Mumm-type rearrangement with dithiocarbamates via isocyanide-based multicomponent reaction under ultrasound irradiation: synthesis of polysubstituted pyrrolidine compounds

    , Article New Journal of Chemistry ; Volume 44, Issue 23 , May , 2020 , Pages 9699-9702 Matloubi Moghaddam, F ; Goudarzi, M ; Chamani, F ; Mohammadzadeh Dezag, H ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    A novel and efficient multicomponent reaction for the synthesis of polysubstituted pyrrolidine derivatives is described under catalyst-free conditions using ultrasonic irradiation. The reactions were performed via a one-pot four-component condensation of secondary amines, carbon disulfide, isocyanides, and gem-dicyano olefins at room temperature to afford polysubstituted pyrrolidines diastereoselectively in 56-96% yields. This is the first report of a Mumm-type rearrangement with dithiocarbamates followed by intramolecular cyclization, which leads to the preparation of the key structure of pyrrolidine. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche... 

    Effects of two- and three-dimensional graphene-based nanomaterials on the fatigue behavior of epoxy nanocomposites

    , Article Materials Today Communications ; Volume 24 , September , 2020 kordi, A ; Adibnazari, S ; Imam, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Epoxy resins and their derivatives, such as composites and epoxy adhesives, are widely used in various industries. However, epoxy resins have low performance against dynamic loading and crack propagation. Graphene-based nanomaterials can improve the mechanical performance of polymeric composites because of their appropriate mechanical properties and high surface area. This study aimed to investigate the effect of Two-Dimensional Graphene Oxide (2DGO) and Three-Dimensional Nitrogen-Doped Graphene (3D(N)G) nanomaterials on the fatigue behavior of epoxy resin. 2DGO was produced by the modified Hummer's method and 3D(N)G was synthesised by hydrothermal process, followed by freeze-drying.... 

    Synthesis and characterization of a new thermosensitive chitosan-PEG diblock copolymer

    , Article Carbohydrate Polymers ; Volume 74, Issue 3 , 2008 , Pages 435-441 ; 01448617 (ISSN) Ganji, F ; Abdekhodaie, M. J ; Sharif University of Technology
    2008
    Abstract
    A novel thermosensitive hydrogel was synthesized by block copolymerization of monomethoxy poly(ethylene glycol) macromere (PEG) onto chitosan backbone, using potassium per sulfate as a free radical initiator. This block copolymer exhibits a thermoreversible transition from an injectable solution at low temperature to a gel at body temperature. Synthesized copolymers were characterized using FT-IR, 1H NMR, 13C NMR, and DSC techniques. Solubility test was performed to compare water and organo-solubility of chitosan before and after copolymerization. Sol-gel transition behavior was investigated using the vial inversion method and viscosity measurements. The gelation behavior makes the... 

    Evaluation of compressive and split tensile strength of slag based aluminosilicate geopolymer reinforced by waste polymeric materials using Taguchi method

    , Article Materials Research Express ; Volume 8, Issue 2 , February , 2021 ; 20531591 (ISSN) Khezrloo, A ; Tayebi, M ; Shafiee, A ; Aghaie, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    In this work, slag based aluminosilicate geopolymer was reinforced with polymeric fibers including, polyester (PES) (waste tire cap plies), polymeric particles including polyethylene terephthalate (PET) (waste water bottle), styrene-butadiene rubber (SBR) (waste tire), and polyvinyl chloride (PVC) (waste water hose). The tensile and compressive strength of the material was evaluated. Taguchi method was employed to assess the influence of the effective parameters on the mechanical characteristics of the geopolymer composite. QUALITEK-4 software was used to create the L32 orthogonal array with 192 (96+96) geopolymer specimens and 32+32 experiments. Analysis of variance (ANOVA) was utilized to... 

    A regioselective approach to synthesize indolyl diketone derivatives via magnetic polymeric copper-catalyst

    , Article Catalysis Letters ; 2021 ; 1011372X (ISSN) Matloubi Moghaddam, F ; Jarahiyan, A ; Pourjavadi, A ; Sharif University of Technology
    Springer  2021
    Abstract
    Abstract: In the present paper, an efficient Cu-catalyzed regioselective acylation of indoles with phenylglyoxals was developed which is the first example of indolyl diketones synthesis by a heterogeneous catalyst. The magnetic polyacrylonitrile was synthesized through anchoring acrylonitrile monomers on Fe3O4 nanoparticles surface and then modified with 2-aminopyridine. At the final step, copper nanoparticles were immobilized onto the polymeric support containing stable ligands from functionalized nitrile groups of polyacrylonitrile. The different techniques such as Fourier transmission infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Transmission... 

    Effect of silicate sodium and graphene nanoplatelets on morphology and rheology characteristics of new synthesized preformed particle gel (PPG) for water shut-off treatment

    , Article Journal of Petroleum Science and Engineering ; Volume 204 , 2021 ; 09204105 (ISSN) Paprouschi, A ; Fatemi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Water flooding is one of the most common enhanced oil recovery (EOR) methods, however its application in naturally fractured reservoirs (NFR), suffers from the flow of water in high permeable channels and fractures which leads to low areal and volumetric sweep efficiency. Preformed Particle Gels (PPG), as a subset of gel treatments, can play a vital role in plugging super-permeable zones either near wellbore or deep in the reservoir. Nevertheless the mechanical strength and thermal stability of the designed PPGs, especially under harsh environmental conditions, are subject to further research and development. In spite of recent studies, the effects of nano-materials on the rheological and... 

    Polymeric nanoparticles for nasal drug delivery to the brain: relevance to alzheimer's disease

    , Article Advanced Therapeutics ; Volume 4, Issue 3 , 2021 ; 23663987 (ISSN) Rabiee, N ; Ahmadi, S ; Afshari, R ; Khalaji, S ; Rabiee, M ; Bagherzadeh, M ; Fatahi, Y ; Dinarvand, R ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Webster, T. J ; Sharif University of Technology
    Blackwell Publishing Ltd  2021
    Abstract
    Currently, Alzheimer's disease (AD) accounts for more than half of all dementia cases. Although genetics, age, and environmental factors affect the disease, the cause of AD is not yet fully known. Various drugs have been proposed for the prevention and treatment of AD, but the delivery of these therapeutic agents to the brain is difficult. The blood–brain barrier prevents systemic drugs from accessing the central nervous system and designing a suitable system to overcome this barrier has attracted much attention. The intranasal pathway, given its proximity to the brain, provides a great opportunity for drug delivery. Understanding the physiological characteristics of the nose can be useful... 

    Comparison among various configurations of hybrid distillation–membrane setups for the energy efficiency improvement of bioethanol distillery: a simulation study

    , Article Journal of Chemical Technology and Biotechnology ; October , 2021 ; 02682575 (ISSN) Iftikhar, S ; Aslam, Z ; Ali, U ; Akhtar, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    BACKGROUND: Hybrid distillation–membrane setups have attracted attention in recent years due to their lower energy usage for ethanol purification. Membrane separation processes operate without heating that reduces energy demand. However, it is somewhat challenging to select the optimal material and process for a membrane purifying ethanol, especially to get an ethanol purity of 99.99% with maximum recovery. RESULTS: In this study, three different configurations of hybrid distillation–membrane setups are proposed consisting of distillation–pervaporation/vapor permeation processes by considering ceramic, polymeric and composite membranes. The design of hybrid processes is performed by coupling... 

    Zwitterion-functionalized MIL-125-NH2-based thin-film nanocomposite forward osmosis membranes: towards improved performance for salt rejection and heavy metal removal

    , Article New Journal of Chemistry ; Volume 46, Issue 31 , 2022 , Pages 15205-15218 ; 11440546 (ISSN) Bayrami, A ; Bagherzadeh, M ; Navi, H ; Nikkhoo, M ; Amini, M ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    In the current study, thin-film nanocomposite membranes (TFN-Mx) based on a zwitterion-functionalized metal-organic framework (MOF) have been developed for the forward osmosis (FO) salt-water separation process. The active polyamide layer was formed through the interfacial polymerization of the m-phenylenediamine aqueous phase (with or without the presence of MIL-125-NH-CC-Cys) and the trimesoyl chloride organic phase. In comparison with the results from the surface of the unmodified membrane, a nanofiller-incorporated TFN-M0.10 membrane represents a smoother and more wettable surface that collaborates synergically to enhance the membrane antifouling ability. Among the examined membranes,...