Loading...
Search for: powders
0.019 seconds
Total 482 records

    On the development of direct metal laser sintering for rapid tooling

    , Article Journal of Materials Processing Technology ; Volume 141, Issue 3 , 2003 , Pages 319-328 ; 09240136 (ISSN) Simchi, A ; Petzoldt, F ; Pohl, H ; Sharif University of Technology
    2003
    Abstract
    An iron based powder blend has been developed for rapid tooling using a direct laser sintering process. The powder consists of a mixture of different elements including Fe, C, Cu, Mo and Ni. High sintering activities were obtained by tailoring the powder characteristics and optimizing the chemical constituents. The manufacturing of complex-shaped parts is possible at rates of 6.75 cm3/h according to CAD data. The residual porosity is less than 5 vol.%. The bending strength is around 900 MPa and the artifact hardness is 490 HV30. To further improve the service life of tools, the processed parts are sintered again in a vacuum furnace at 1260 °C for 30 min. This enables to manufacture precision... 

    A plasticity model for metal powder forming processes

    , Article International Journal of Plasticity ; Volume 17, Issue 12 , 2001 , Pages 1659-1692 ; 07496419 (ISSN) Lewis, R. W ; Khoei, A. R ; Sharif University of Technology
    2001
    Abstract
    In this paper, a double-surface plasticity model, based on a combination of a convex yield surface consisting of a failure envelope, such as a Mohr-Coulomb yield surface and, a hardening cap model, is developed for the nonlinear behaviour of powder materials in the concept of a generalized plasticity formulation for the description of cyclic loading. This model reflects the yielding, frictional and densification characteristics of powder along with strain and geometrical hardening which occur during the compaction process. The solution yields details on the powder displacement from which it is possible to establish the stress state in the powder and the densification is derived from... 

    Microstructural characterization and enhanced tensile and tribological properties of Cu-SiC nanocomposites developed by high-pressure torsion

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 4038-4051 ; 22387854 (ISSN) Akbarpour, M. R ; Gharibi Asl, F ; Mousa Mirabad, H ; Kim, H. S ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    In this study, an attempt has been made to fabricate Cu-SiC nanocomposites by flake powder metallurgy and high-pressure torsion processing techniques at room temperature. Pure Cu and a mixture of Cu and nano-sized SiC powders were mechanically milled separately for 3 h and then green compacts were prepared by uniaxial pressing under 1 GPa pressure. The green compacts experienced 6-turn high-pressure torsion under a pressure of 6 GPa to prepare bulk Cu and Cu-SiC samples. The microstructures of the consolidated samples were characterized using an X-ray diffractometer and a high resolution scanning/transmission electron microscope, and the mechanical properties were evaluated by microhardness,... 

    Effect of building direction on high strain-rate compressive behavior of heat-treated LPBF-maraging steels using Split Hopkinson pressure bar apparatus

    , Article Materials Science and Engineering A ; Volume 835 , 2022 ; 09215093 (ISSN) Dehgahi, S ; Pirgazi, H ; Sanjari, M ; Seraj, P ; Odeshi, A ; Kestens, L. A. I ; Mohammadi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Rod-shaped samples of maraging steel were additively fabricated in vertical and horizontal directions using laser powder bed fusion technique. The samples were first aged at 490 °C for 6 h and then subjected to dynamic compressive tests using Split Hopkinson Pressure Bar apparatus. The dynamic compression tests were conducted on vertical samples at strain rates of 190, 460, 810, 1100, 1300 s−1. However, the high strain rate tests were performed at strain rates of 120, 615, 745, 890, 2200 s−1 on horizontal samples. After applying the compressive impact loads on the samples, it was found that although horizontally built samples exhibit higher dynamic strength, vertically built samples show... 

    A plastic-yield compaction model for nanostructured Al6063 alloy and Al6063/Al2O3 nanocomposite powder

    , Article Powder Technology ; Volume 211, Issue 2-3 , 2011 , Pages 215-220 ; 00325910 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    A modified plastic yield function is proposed to predict the consolidation behavior of nanostructured metal powders and metal-matrix nanocomposite powders under uniaxial compaction. The validity of the model is verified for nanocrystalline Al6063 (~100nm) alloy reinforced without and with 0.8vol.% Al2O3 nanoparticles (~25nm). The plastic deformation propensity of these powders is analyzed by linear compaction equations. The yield stress of the powder compacts is shown to be influenced by the nano-scale grains and the reinforcement nanoparticles  

    Sol-gel synthesis of Mn1.5Co1.5O4 spinel nano powders for coating applications

    , Article Materials Research Bulletin ; Volume 102 , 2018 , Pages 180-185 ; 00255408 (ISSN) Hashemi, S. T ; Dayaghi, A. M ; Askari, M ; Gannon, P. E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Mn1.5Co1.5O4 oxide spinels are widely used as protective coatings for stainless steel interconnects within planar solid oxide fuel cell stacks. Containing both cubic and tetragonal crystalline phases, these Mn/Co oxide spinels exhibit favorable thermal stability and electronic conductivity for the SOFC interconnect application. Slurry-based coating applications of Mn/Co oxides require precursor powders, which can benefit from being nano-structured. In this study, the sol-gel synthesis of nanocrystalline Mn1.5Co1.5O4 spinel is investigated. The decomposition of sol-gel precursors, as well as the crystalline phase structures and microstructures of the product Mn1.5Co1.5O4 are characterized by... 

    Sintering behavior of Al-AlN-nanostructured composite powder synthesized by high-energy ball milling

    , Article Journal of Alloys and Compounds ; Volume 473, Issue 1-2 , 2009 , Pages 116-122 ; 09258388 (ISSN) Abdoli, H ; Asgharzadeh, H ; Salahi, E ; Sharif University of Technology
    2009
    Abstract
    High strength Al-AlN composites were synthesized via high-energy milling and sintering technique. Al-X wt.% AlN (X = 0, 2.5, 5 and 10) composite powders were milled in a planetary ball mill for 25 h. Morphology, particle size distribution, crystallite size, micro-strain, and microhardness of milled powders were studied. Ball-milled powders were degassed at 400 °C for 30 min. After uniaxial cold compaction, composite compacts were sintered at 650 °C for 20, 30 and 60 min under N2 atmosphere. Effects of reinforcement content, degassing treatment and sintering time on the sinterability of powders were investigated. The results revealed that the sinterability was degraded by increasing the... 

    Modeling and Analysis of the Powder Deposition Mechanisms of Selective Laser Sintering Process

    , M.Sc. Thesis Sharif University of Technology Shakiba, Abdorreza (Author) ; Movahedi, Mohamad Reza (Supervisor)
    Abstract
    Selective laser sintering is a technique which uses a laser as the power source to sintering some selected points at a bed of powder in order to create a solid structure. In this research the SLS mechanisms of powder deposition is simulated and surface smoothness and layer density created by each mechanism is computed. For this purpose roller, blade and hopper mechanisms are simulated. For this simulation, polyamide 12 (PA2200) which is a common material is used. In this simulation at first powder specifications are extracted according to the references and for particle shape instead of using the spherical particle shape we use a certain shape that is more close to reality which created by... 

    Multi-Scale Simulation of Metallic Nano-Alloy Compression Process Using Plasticity Cone-Cap Behavior Model

    , M.Sc. Thesis Sharif University of Technology Ashtari, Mehrdad (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The primary purpose of this study is to perform nonlinear behavior simulations in the compaction and forming of metal powders and their alloys and investigate their behavior in the plastic state. Powder compression is one of the methods of producing metal parts with high precision and improved mechanical properties, which is why it has been considered in addition to its need in the industry.There are various methods for performing these simulations, including multi-scale methods with optimal performance. Given that only the use of high-scale methods or only low-scale methods will have problems and disadvantages in such simulations, multi-scale methods will be a good alternative in which both... 

    Design and Prototyping of a Continuous Coaxial Nozzle for Uniforml Metal Powder Deposition at Various Angles

    , Ph.D. Dissertation Sharif University of Technology Nasiri Khansari, Mohammad Taghi (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Direct metal deposition (DMD) process is an additive manufacturing technology that is rapidly gaining laser importance due to its various capabilities in applications such as coating, repairing high-value damaged parts, rapid prototyping and even production in small quantities. Among the equipment needed for this process, nozzle is perhaps the most important component because its performance affect the efficiency of powders trapped in the molten pool, and is crucial to the quality of the deposited layer. The existing nozzle designs can be categorized in two groups; lateral and coaxial nozzles; and the coaxial ones are divided into continuous and discontinuous types. Coaxial nozzles have... 

    Wear Behavior of Al-Fe-Cu Composite Produced by Friction Stir Processing

    , M.Sc. Thesis Sharif University of Technology Karimi, Mehran (Author) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Composite production is an important method for increasing abrasion resistance in materials. Friction stir processing (FSP) is a solid composite production method which has eliminated the problems of liquid composite production. This research used FSP to study the possibility of in situ production of 1050 aluminum composite with a mixture of copper and iron powder with micrometer sizes of 25-14 and 10 μm, respectively, as reinforcing particles. The following weight percentages of reinforcing powder was added to the sample: 75% iron-25% copper, 50% iron-50% copper and 25% iron-75% copper. In addition, 3 and 5 process passes were considered as another variable in this study. Afterward, the... 

    An investigation on mechanical properties of Alumina-Zirconia-Magnesia spinel composite ceramics fabricated by gel-casting using solution combustion synthesized powder

    , Article Materials Science and Engineering A ; Volume 587 , 2013 , Pages 336-343 ; 09215093 (ISSN) Khoshkalam, M ; Faghihi Sani, M. A ; Sharif University of Technology
    2013
    Abstract
    Addition of spinel (MgAl2O4) to Al2O3-ZrO2 composite inhibits alumina grain growth and produces phase boundaries that leads to formation of a ceramic matrix composite with special mechanical properties such as high temperature superplastic deformation. However, the room temperature mechanical properties of Alumina-zirconia-magnesia spinel composite (AZM) such as fracture toughness were rarely investigated by researchers. In this research the AZM nanocomposite powders were synthesized via the solution combustion method. The dense AZM composite samples were fabricated through gelcasting process. Phase analysis studies were performed on both powder and sintered samples and the effects of spinel... 

    Preparation and characterisation of diopside-based glass-ceramic foams

    , Article Ceramics International ; Volume 38, Issue 3 , 2012 , Pages 2005-2010 ; 02728842 (ISSN) Hasheminia, S ; Nemati, A ; Eftekhari Yekta, B ; Alizadeh, P ; Sharif University of Technology
    2012
    Abstract
    Foaming and crystallisation behaviours of compacted glass powders based on a diopside glass-ceramic composition were investigated using the sintering route. The foaming agent was 2 wt.% SiC particles. The effect of PbO on the foaming ability of glasses was investigated. The results showed that the addition of PbO not only improved the foaming ability, by improving the wettability of the glass-SiC particles but also increased the crystallisation temperature and widened the temperature interval between the dilatometric softening point and the onset of crystallisation. The glass-SiC wetting angle was decreased from 85°for the lead-free glass, to 55°for the glass that contains 15 wt.% PbO  

    3D dynamic modeling of large plastic deformations in powder die-pressing

    , Article Proceedings of the 10th International Conference on Technology of Plasticity, ICTP 2011, 25 September 2011 through 30 September 2011, Aachen ; September , 2011 , Pages 1010-1015 ; 9783514007840 (ISBN) Khoei, A. R ; Biabanaki, S. O. R ; Parvaneh, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, a computational algorithm is presented in three-dimensional dynamic modeling of powder compaction processes. The contact node-to-surface algorithm is employed to impose the contact constraints in large deformation frictional contact, and the contact frictional slip is modified by the Coulomb friction law to simulate the frictional behavior between the rigid punch and the work-piece. The 3D nonlinear contact friction algorithm is employed together with a double-surface cap plasticity model within the framework of large FE deformation in order to predict the non-uniform relative density distribution during the dynamic simulation of powder die-pressing. Finally, the performance... 

    Sintering viscosity and sintering stress of nanostructured WC-Co parts prepared by powder injection moulding

    , Article Powder Metallurgy ; Volume 54, Issue 1 , Nov , 2011 , Pages 84-88 ; 00325899 (ISSN) Simchi, A ; Sharif University of Technology
    2011
    Abstract
    The uniaxial viscosity and sintering stress of WC-10Co-0·9VC (wt-%) were obtained by a loading dilatometer as functions of fractional density (0·64<ρ<0·93) and temperature (1084

    Effect of starting materials on the wear performance of NiTi-based composites

    , Article Wear ; Volume 334-335 , July , 2015 , Pages 35-43 ; 00431648 (ISSN) Farvizi, M ; Ebadzadeh, T ; Vaezi, M. R ; Yoon, E. Y ; Kim, Y. J ; Kang, J. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    NiTi alloys have exhibited significant potential as a matrix of wear resistant composites. In this study, in order to examine the effect of starting materials on the wear performance of NiTi-based composites, both elemental Ni/Ti and prealloyed NiTi powders were used to fabricate NiTi-6wt% nano-Al2O3 composites using hot isostatic pressing (HIP). Nanoindentation and microhardness test results indicate that the composite samples produced from the elemental Ni/Ti powders exhibited higher hardness and lower pseudoelasticity properties than those of the samples fabricated from the prealloyed NiTi powders; this is attributed to the higher amount of... 

    Effect of sintering temperature on tribological behavior of Ce-TZP/Al2O3-aluminum nanocomposite

    , Article Journal of Composite Materials ; Volume 49, Issue 28 , December , 2015 , Pages 3507-3514 ; 00219983 (ISSN) Bahrami, A ; Soltani, N ; Pech Canul, M. I ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    10Ce-TZP/Al2O3 nanoparticles as reinforcement can be a good substitute in aluminum matrix composites prepared through powder metallurgy. In this work, the effects of sintering temperature on the hardness, friction, and wear characteristics of Al-10Ce-TZP/Al2O3 composites have been investigated. Ce-TZP/Al2O3 nanocomposites were synthesized by the aqueous combustion method. About 7 wt% 10Ce-TZP/Al2O3-aluminum composites in the form of cylindrical samples were prepared at the sintering temperatures of 400°C, 450°C, and 500°C under an applied pressure of 600 MPa for 60 min. The experimental results show that the distribution of Ce-TZP/Al2O3 nanocomposite into the metal matrix is homogenous and... 

    Sintering of nanostructured WC-10Co/316L stainless-steel composite parts made by assembling of the PIM parts

    , Article World Powder Metallurgy Congress and Exhibition, World PM 2010, Florence, 10 October 2010 through 14 October 2010 ; Volume 4 , 2010 ; 9781899072194 (ISBN) Simchi, A ; Petzoldt, F ; Hartwig, T ; Veltl, G ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2010
    Abstract
    This paper reports co-sintering response of nanostructured WC-Co/316L stainless steel composite produced by assembling of powder injection molding (PIM) parts. A significant mismatch sintering shrinkage (>4%) was observed in the temperature range of 1080-1350 °C. The reaction between WC and Fe at the contact area resulted in the diffusion of C and Co into the iron lattice and eventually formation of a low-temperature liquid phase that in fact affects the shape control of the PIM parts during sintering. In order to make the co-sintering feasible, a special sintering cycle was developed. The reaction between the cemented carbide and stainless steel was also retarded by developing a special... 

    Hydrogen desorption properties of MgH2-5at% TiCr1.2Fe0.6 nanocomposite synthesized by high-energy mechanical alloying

    , Article World Powder Metallurgy Congress and Exhibition, World PM 2010, Florence, 10 October 2010 through 14 October 2010 ; Volume 1 , 2010 ; 9781899072194 (ISBN) Mahmoudi, N ; Simchi, A ; Kaflou, A ; Sharif University of Technology
    European Powder Metallurgy Association (EPMA)  2010
    Abstract
    We have synthesized nanocrystalline MgH2-5at% TiCr1.2Fe0.6 nanocomposite powder by high-energy mechanical alloying for onboard hydrogen storage application. Magnesium hydride and the elemental Ti, Cr, and Ni powders were milled in a SPEX 800 mill under a high purity argon atmosphere. The dehydrogenation properties of the nanocomposite were studied by simultaneous thermal analyzer. The crystallite size of the nanocomposite was determined by XRD method. It is shown that nanometric grain structure, ultrafine particle size, and the catalytic effect of the transition metals possess a relatively low desorption temperature (262 °C) with 5.5wt % hydrogen release for the nanocomposite powder. The... 

    Effect of brookite presence on nanocrystalline anatase - Rutile phase transformation

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 961-972 ; 14757435 (ISSN) Mahshid, S ; Askari, M ; Sasani Ghamsari, M ; Sharif University of Technology
    2009
    Abstract
    TiO2nanocrystals were prepared by hydrolysis and peptisation of titanium isopropoxide under different pH values. The as-prepared powder of very fine anatase crystallites ranges from 8 nm in acidic solution of pH 3 to 10 nm in basic solution of pH 8. Heat treatment of the powders leads to grain growth and anatase - rutile transformation. Experimental results have shown that the anatase to rutile phase transformation in the heat-treated powders depend not only on primary crystallite size but also the presence of brookite phase. It is observed that in the powders with the same size the presence brookite phase would accelerate the anatase to rutile transformation. Furthermore it has been found...