Loading...
Search for: power-transmission
0.013 seconds
Total 380 records

    Bi-level planning of distributed energy resources into existing transmission grids: Pathway to sustainable energy systems

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 24 , 2022 , Pages 4963-4979 ; 17518687 (ISSN) Ranjbar, H ; Saber, H ; Sharifzadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    This paper presents a novel stochastic planning framework for the integration of renewable distributed energy resources (DERs) into existing power systems without relying on new investments in the transmission networks. The upper-level problem of the proposed model aims at minimizing the total expected social cost of supplying demand that includes the expected cost of getting energy from conventional generating units and DERs, the congestion cost of transmission networks, and the greenhouse gas (GHG) emission cost, while each of the privately invested DER satisfies a specified rate of return. The lower-level problem clears the electricity market to find locational marginal prices (LMPs) and... 

    Harnessing power system flexibility under multiple uncertainties

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 14 , 2022 , Pages 2878-2890 ; 17518687 (ISSN) Mazaheri, H ; Saber, H ; Fattaheian Dehkordi, S ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Increasing the intermittent outputs of renewable energy sources (RESs) has forced planners to define a new concept named flexibility. In this regard, some short- and long-term solutions, such as transmission expansion planning (TEP) and energy storage systems (ESSs) have been suggested to improve the flexibility amount. A proper optimization procedure is required to choose an optimal solution to improve flexibility. Therefore, a mixed-integer linear programming (MILP) direct-optimization TEP versus ESSs co-planning model is presented in this paper to enhance power system flexibility. In doing so, a novel RES-BESS-based grid-scale system flexibility metric is proposed to investigate the... 

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 4 , 2022 , Pages 2639-2654 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Scheduling and sizing of campus microgrid considering demand response and economic analysis

    , Article Sensors ; Volume 22, Issue 16 , 2022 ; 14248220 (ISSN) Bin, L ; Shahzad, M ; Javed, H ; Muqeet, H. A ; Akhter, M. N ; Liaqat, R ; Hussain, M. M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Current energy systems face multiple problems related to inflation in energy prices, reduction of fossil fuels, and greenhouse gas emissions which are disturbing the comfort zone of energy consumers and the affordability of power for large commercial customers. These kinds of problems can be alleviated with the help of optimal planning of demand response policies and with distributed generators in the distribution system. The objective of this article is to give a strategic proposition of an energy management system for a campus microgrid (µG) to minimize the operating costs and to increase the self-consuming energy of the green distributed generators (DGs). To this end, a real-time based... 

    Short-term resilience-oriented enhancement in smart multiple residential energy system using local electrical storage system, demand side management and mobile generators

    , Article Journal of Energy Storage ; Volume 52 , 2022 ; 2352152X (ISSN) Kashanizadeh, B ; Mohammadnezhad Shourkaei, H ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recently, many investigations have been studied on the effects of the uncommon extreme events like hurricanes in electrical distribution grids. These events leads to damage to distribution grid equipments, and they are cause widespread blackouts. This paper presents short-term resilience enhancement of the residential sections against hurricane at day-ahead. The lines outage in the electrical distribution grid is implemented as stochastic modeling by hurricane. The resilience enhancement is done in the multiple energy systems such as integrated gas, heat and electrical. The three-stage multi-objective functions optimization is proposed for resilience-oriented enhancement. The proposed... 

    Sustainable solutions for advanced energy management system of campus microgrids: model opportunities and future challenges

    , Article Sensors ; Volume 22, Issue 6 , 2022 ; 14248220 (ISSN) Muqeet, H. A ; Javed, H ; Akhter, M. N ; Shahzad, M ; Munir, H. M ; Nadeem, M. U ; Bukhari, S. S. H ; Huba, M ; Sharif University of Technology
    MDPI  2022
    Abstract
    Distributed generation connected with AC, DC, or hybrid loads and energy storage systems is known as a microgrid. Campus microgrids are an important load type. A university campus microgrids, usually, contains distributed generation resources, energy storage, and electric vehicles. The main aim of the microgrid is to provide sustainable, economical energy, and a reliable system. The advanced energy management system (AEMS) provides a smooth energy flow to the microgrid. Over the last few years, many studies were carried out to review various aspects such as energy sustainability, demand response strategies, control systems, energy management systems with different types of optimization... 

    Model-free LQR design by Q-function learning

    , Article Automatica ; Volume 137 , 2022 ; 00051098 (ISSN) Farjadnasab, M ; Babazadeh, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Reinforcement learning methods such as Q-learning have shown promising results in the model-free design of linear quadratic regulator (LQR) controllers for linear time-invariant (LTI) systems. However, challenges such as sample-efficiency, sensitivity to hyper-parameters, and compatibility with classical control paradigms limit the integration of such algorithms in critical control applications. This paper aims to take some steps towards bridging the well-known classical control requirements and learning algorithms by using optimization frameworks and properties of conic constraints. Accordingly, a new off-policy model-free approach is proposed for learning the Q-function and designing the... 

    Maximizing the utilization of existing grids for renewable energy integration

    , Article Renewable Energy ; Volume 189 , 2022 , Pages 618-629 ; 09601481 (ISSN) Ranjbar, H ; Kazemi, M ; Amjady, N ; Zareipour, H ; Hosseini, S. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper presents a new model to maximize the utilization of existing transmission system infrastructure by optimally sizing and siting the future developments of variable renewable energy sources (VRES). The model tries to maximize the integration of VRES in power systems with minimum expected energy curtailment without relying on new investments in the transmission systems. The proposed model is formulated as a linear stochastic programming optimization problem where VRES output scenarios are generated such that their spatio-temporal correlations are maintained. The Progressive Hedging Algorithm (PHA) with bundled scenarios is utilized to solve the proposed model for large-scale cases.... 

    Gramian-based vulnerability analysis of dynamic networks

    , Article IET Control Theory and Applications ; Volume 16, Issue 6 , 2022 , Pages 625-637 ; 17518644 (ISSN) Babazadeh, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    In this paper, the vulnerability of large-dimensional dynamic networks to false data injections is analysed. The malicious data can manipulate input injection at the control nodes and affect the outputs of the network. The objective is to analyse and quantify the potential vulnerability of the dynamics by such adversarial inputs when the opponents try to avoid being detected as much as possible. A joint set of most effective actuation nodes and most vulnerable target nodes are introduced with minimal detectability by the monitoring system. Detection of this joint set of actuation-target nodes is carried out by introducing a Gramian-based measure and reformulating the vulnerability problem as... 

    Peer-to-Peer energy sharing among smart energy hubs in an integrated heat-electricity network

    , Article Electric Power Systems Research ; Volume 206 , 2022 ; 03787796 (ISSN) Daryan, A. G ; Sheikhi, A ; Ashouri Zadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    By increasing the penetration level of the combined heat and power systems and demand response programs between energy consumers in the distribution network, the interaction between electricity and the natural gas network becomes more complicated. This paper proposes a peer-to-peer (P2P) energy sharing scheme for energy trading among Smart Energy Hubs (S.E. Hubs) which can trade both electrical and thermal energy with each other to reduce their cost and, reduce their dependency to gas and electricity utility companies. A two-stage energy strategy is presented. In the first stage, the S.E. Hubs total social cost is reduced by finding the optimal energy sharing profiles. And, in the second... 

    Optimal scheduling of demand side load management of smart grid considering energy efficiency

    , Article Frontiers in Energy Research ; Volume 10 , 2022 ; 2296598X (ISSN) Balouch, S ; Abrar, M ; Abdul Muqeet, H ; Shahzad, M ; Jamil, H ; Hamdi, M ; Malik, A. S ; Hamam, H ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    The purpose of this research is to provide power grid energy efficiency solutions. In this paper, a comprehensive review and its optimal solution is proposed considering the various challenges of smart grid demand-side management. The main technique is based on a novel idea in the Smart Grid—demand response optimization which enables autonomous energy management on the demand side for a wide variety of customers. The first section of this research examines the smart grid issue and evaluates the state-of-the-art load management techniques in terms of the work’s scope. The demand-side load management architecture consists of three primary levels, two of them in line planning and low-cost... 

    Uncertainty cost of stochastic producers: metrics and impacts on power grid flexibility

    , Article IEEE Transactions on Engineering Management ; Volume 69, Issue 3 , 2022 , Pages 708-719 ; 00189391 (ISSN) Pourahmadi, F ; Hosseini, S. H ; Dehghanian, P ; Shittu, E ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The widespread presence of contingent generation, when coupled with the resulting volatility of the chronological net-load (i.e., the difference between stochastic generation and uncertain load) in today's modern electricity markets, engender the significant operational risks of an uncertain sufficiency of flexible energy capacity. In this article, we address several operational flexibility concerns that originate from the increase in generation variability captured within a security-constrained unit commitment (SCUC) formulation in smart grids. To quantitatively assess the power grid operational flexibility capacity, we first introduce two reference operation strategies based on a two-stage... 

    A DC power system stabilizer based on passivity-oriented DC bus impedance shaping

    , Article Scientia Iranica ; Volume 29, Issue 4 , 2022 , Pages 2029-2039 ; 10263098 (ISSN) Asbafkan, A ; Mokhtari, H ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    High penetration of Power Electronic (PE) converters in DC power grids causes new stability challenges due to dynamic interactions among the subsystems of a network. Such dynamic interactions can be avoided by the impedance coordination among the subsystems through the modification of control loops or passive elements inside a grid. Impedance coordination is a very complex and time-consuming task with no adaptations to dynamic changes in a power grid. The current study delved into the concepts of dynamic interaction and passivity and they were combined to provide an online stability measure concerning the DC bus impedance characteristics. In this regard, a novel DC Power System Stabilizer... 

    Risk management framework of peer-to-peer electricity markets

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Seyedhossein, S. S ; Moeini Aghtaie, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Due to the acceleration of energy transition from fossil fuels to Distributed Energy Resources (DERs), the structure of the power industry (mainly generation and distribution) is changing. The emergence of the smart grid concept and Peer-to-Peer (P2P) electricity markets make local producers and consumers face new challenges and risks. Managing the risks that the participants in P2P markets are encountered is necessary to guarantee a sustainable penetration of such markets. This article provides a comprehensive risk analysis by implementing a proposed risk management framework to address the identification, classification, assessment, and mitigation of all risks that prosumers will face when... 

    True Class-E Design For Inductive Coupling Wireless Power Transfer Applications

    , Article 30th International Conference on Electrical Engineering, ICEE 2022, 17 May 2022 through 19 May 2022 ; 2022 , Pages 864-868 ; 9781665480871 (ISBN) Haeri, A. A. R ; Safarian, A ; Fotowat Ahmady, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    The Class-E power amplifier has been widely studied and formulated in the literature. Although the majority of reported inductive coupling wireless power transfer (WPT) systems use a class-E power amplifier for driving the primary coil, still there is a lack of a comprehensive study on class-E circuit dedicated to WPT, providing a set of closed form design equations for proper class-E operation. This paper presents the required design equations needed to design a 'true' class-E circuit for WPT applications. Equations for the series-tuned secondary coil WPT system are presented, as well as two different design procedures for the parallel-tuned secondary coil. The derived equations have been... 

    Robust coordinated distribution system planning considering transactive DSO's market

    , Article IEEE Transactions on Power Systems ; 2022 , Pages 1-11 ; 08858950 (ISSN) Kabiri-Renani, Y ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a robust distribution system expansion planning (DSP) approach is presented to supply the load growth locally and move toward nearly zero energy local distribution areas (LDAs). In the proposed approach, a distribution system operator (DSO) is responsible for secure and optimum operation of LDAs. Therefore, investors on distribution system upgrades use this approach to maximize the profit on investments by determining the installation year of new distribution feeders and energy resources, distributed energy resource (DER) placements and sizes considered by corresponding DSOs. The accurate AC power flow solution is used and mathematical methods are developed to model the DSP as... 

    Improved resonant converter for dynamic wireless power transfer employing a floating-frequency switching algorithm and an optimized coil shape

    , Article IEEE Access ; Volume 10 , 2022 , Pages 56914-56924 ; 21693536 (ISSN) Ghohfarokhi, S. S ; Tarzamni, H ; Tahami, F ; Kyyra, J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper offers a new EF-class converter for dynamic wireless power transfer application. The proposed high-frequency converter employs a floating-frequency switching algorithm to control the converter in a continuous frequency range, eliminate the requirement to any additional operational data from the secondary (receiver) side, accelerate the load impedance match while moving, maximize the transferred power rate, reduce charging interval and compensate power transfer tolerances. Moreover, an optimized super elliptical shape coil is designed to cope with lateral misalignment, enhance coil coupling, and increase efficiency. In the proposed converter, (i) soft switching is implemented to... 

    A comparative analysis of the new excitation controlled synchronous generator-based wind turbine

    , Article Scientia Iranica ; Volume 29, Issue 1 D , 2022 , Pages 151-167 ; 10263098 (ISSN) Shamsnia, A ; Parniani, M ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Excitation Controlled Synchronous Generator-based Wind Turbine (ECSG WT) is a recently proposed Wind Turbine (WT) scheme that has not been fully investigated in detail. This paper intends to analyze the performance of the ECSG WT scheme and compare it with those of two mainstream WT schemes based on electrically excited synchronous generator, i.e., VSC-based full converter WT and diode bridge rectifier-based WT equipped with boost converter on its Direct Current (DC) link. The objective of this comparison is to demonstrate great potentials of ECSG WT to be considered in the wind industry. To do so, two successful Wind Turbine (WT) schemes in the market that are structurally close to ECSG WT... 

    A linearized transmission expansion planning model under N − 1 criterion for enhancing grid-scale system flexibility via compressed air energy storage integration

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 2 , 2022 , Pages 208-218 ; 17518687 (ISSN) Mazaheri, H ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Dehghanian, P ; Khoshjahan, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The concept of flexibility is defined as the power systems’ ability to effectively respond to changes in power generation and demand profiles to maintain the supply–demand balance. However, the inherent flexibility margins required for successful operation have been recently challenged by the unprecedented arrival of uncertainties, driven by constantly changing demand, failure of conventional units, and the intermittent outputs of renewable energy sources (RES). Tackling these challenges, energy storage systems (ESS) as one important player of the new power grids can enhance the system flexibility. It, therefore, calls for an efficient planning procedure to ensure flexibility margins by... 

    Sensitivity-based optimal remedial actions to damp oscillatory modes considering security constraints

    , Article International Journal of Electrical Power and Energy Systems ; Volume 135 , 2022 ; 01420615 (ISSN) Setareh, M ; Parniani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper proposes a comprehensive analytic method for applying various optimal remedial actions to improve critical electromechanical modes damping without jeopardizing damping of non-critical modes and violating security constraints of power system. Generators and reactive power sources redisptach, demand side management and the generators voltage reference tuning are remedial actions that are considered here. Dynamic equations of the flux-decay dynamic model of generators, standard dynamic models of excitation system and power system stabilizer and algebraic equations of active and reactive powers balance are formulated in the quadratic eigenvalue problem framework. With simultaneous use...