Loading...
Search for: regulators
0.014 seconds
Total 247 records

    Grid-fault ride-through analysis and control of wind turbines with doubly fed induction generators

    , Article Electric Power Systems Research ; Volume 80, Issue 2 , February , 2010 , Pages 184-195 ; 03787796 (ISSN) Rahimi, M ; Parniani, M ; Sharif University of Technology
    2010
    Abstract
    This paper deals with the low voltage ride-through (LVRT) control of wind turbines with doubly fed induction generators (DFIGs) under symmetrical voltage dips. The investigation first develops a mathematical formula for the rotor current and rotor voltage when DFIG is subjected to a symmetrical voltage dip. From the analysis, the reasons of rotor inrush current and factors influencing it are inferred. Then, a control scheme enhancing the wind turbine LVRT capability is designed and simulated. The proposed control scheme consists of a nonlinear control strategy applied to the rotor-side converter and a dc-link voltage control applied to the grid-side converter. It improves the damping of DFIG... 

    An integrated analysis to predict micro-RNAs targeting both stemness and metastasis in breast cancer stem cells

    , Article Journal of Cellular and Molecular Medicine ; Volume 23, Issue 4 , 2019 , Pages 2442-2456 ; 15821838 (ISSN) Rahimi, M ; Sharifi Zarchi, A ; Firouzi, J ; Azimi, M ; Zarghami, N ; Alizadeh, E ; Ebrahimi, M ; Sharif University of Technology
    Blackwell Publishing Inc  2019
    Abstract
    Several evidences support the idea that a small population of tumour cells representing self-renewal potential are involved in initiation, maintenance, metastasis, and outcomes of cancer therapy. Elucidation of microRNAs/genes regulatory networks activated in cancer stem cells (CSCs) is necessary for the identification of new targets for cancer therapy. The aim of the present study was to predict the miRNAs pattern, which can target both metastasis and self-renewal pathways using integration of literature and data mining. For this purpose, mammospheres derived from MCF-7, MDA-MB231, and MDA-MB468 were used as breast CSCs model. They had higher migration, invasion, and colony formation... 

    Designing a LQR controller for an electro-hydraulic-actuated-clutch model

    , Article Proceedings of 2016 2nd International Conference on Control Science and Systems Engineering, ICCSSE 2016, 27 July 2016 through 29 July 2016 ; 2016 , Pages 82-87 ; 9781467398725 (ISBN) Pourebrahim, M ; Selk Ghafari, A ; Pourebrahim, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    During the past decade, Electro-Hydraulic system has performed a significant role in industrial engineering as an actuator for high performance and precision positioning applications. In this case, many control methods have been developed for an electro-hydraulic actuated clutch. In this paper a Linear Quadratic Regulators (LQR) is proposed to trajectory control of a wet clutch actuated by a hydraulic servo valve mechanism. Simulation study was performed using linearized mathematical model of the system implemented in MATLAB software. Based on the simulation results performance of the proposed controller was evaluated and discussed  

    Cellular design for a dense RFID reader environment

    , Article APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 30 November 2008 through 3 December 2008 ; January , 2008 , Pages 1124-1127 ; 9781424423422 (ISBN) Pourbagheri, S ; Bakhtiar, M. S ; Atarodi, M ; Sharif University of Technology
    2008
    Abstract
    This paper presents a method for positioning a large number of readers in an RFID cellular deployment zone while taking advantage of frequency and time domain multiplexing. The safe distance among the readers in the proposed cellular structure is calculated considering features such as collisions, local regulations and propagation issues. Using hexagonal cells, the RFID readers and tags are placed in an assumptive environment such as a warehouse building or a supermarket and the reliability of the implementation is estimated by means of calculating the total Bit Error Rate (BER). © 2008 IEEE  

    Determining shear capacity of ultra-high performance concrete beams by experiments and comparison with codes

    , Article Scientia Iranica ; Volume 26, Issue 1A , 2019 , Pages 273-282 ; 10263098 (ISSN) Pourbaba, M ; Joghataie, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this research, 19 specimens of ultra-high performance fiber-reinforced concrete rectangular beams were made and their shear resistance was determined experimentally. The results were compared with estimations by ACI 318, RILEM TC 162-TDF, Australian guideline, and Iranian national building regulations. To compare the code estimations, the ratio of experimental shear strength to predicted shear strength was calculated for each code. This ratio is in fact a measure of safety factor on the one hand and a measure of precision of the estimation on the other hand. Based on the results of both studies, the authors concluded that the Australian guideline, with the amount of 2.5, provided the... 

    Determining shear capacity of ultra-high performance concrete beams by experiments and comparison with codes

    , Article Scientia Iranica ; Volume 26, Issue 1A , 2019 , Pages 273-282 ; 10263098 (ISSN) Pourbaba, M ; Joghataie, A ; Sharif University of Technology
    Sharif University of Technology  2019
    Abstract
    In this research, 19 specimens of ultra-high performance fiber-reinforced concrete rectangular beams were made and their shear resistance was determined experimentally. The results were compared with estimations by ACI 318, RILEM TC 162-TDF, Australian guideline, and Iranian national building regulations. To compare the code estimations, the ratio of experimental shear strength to predicted shear strength was calculated for each code. This ratio is in fact a measure of safety factor on the one hand and a measure of precision of the estimation on the other hand. Based on the results of both studies, the authors concluded that the Australian guideline, with the amount of 2.5, provided the... 

    Innovation in regulated electricity networks: Incentivising tasks with highly uncertain outcomes

    , Article Competition and Regulation in Network Industries ; Volume 21, Issue 2 , 2020 , Pages 166-192 Poudineh, R ; Peng, D ; Mirnezami, S. R ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Traditional regulatory models of natural monopoly network utilities are designed to incentivise cost-efficiency, subject to the firm achieving a certain level of reliability. With the rise of decarbonisation as a key policy goal, facilitating innovation in electricity networks has become of vital importance. Innovation and cost-efficiency may overlap and exhibit the same risk profile. However, we show that when there is a difference in their risk profile, incentivising these two tasks using the same incentive scheme is ineffective. This means incentive regulations need to be enhanced with additional modules that take into account the level of risk to which companies are exposed to for their... 

    Distribution system planning considering integration of distributed generation and load curtailment options in a competitive electricity market

    , Article Electrical Engineering ; Volume 93, Issue 1 , 2011 , Pages 23-32 ; 09487921 (ISSN) Porkar, S ; Abbaspour Tehrani Fard, A ; Poure, P ; Saadate, S ; Sharif University of Technology
    Abstract
    Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and new deregulated environment. In the new deregulated energy market and considering the incentives coming from the technical and economical fields, it is reasonable to consider distributed generation (DG) as a viable option to solve the lacking electric power supply problem. This paper presents a mathematical distribution system planning model considering three planning options to system expansion and to meet the load growth requirements with a reasonable price as well as the system power quality problems. DG is introduced as an attractive... 

    A new framework for large distribution system optimal planning in a competitive electricity market

    , Article 2010 IEEE International Energy Conference and Exhibition, EnergyCon 2010, 18 December 2010 through 22 December 2010 ; 2010 , Pages 1-6 ; 9781424493807 (ISBN) Porkar, S ; Poure, P ; Abbaspour Tehrani Fard, A ; Saadate, S ; Sharif University of Technology
    Abstract
    Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and new deregulated environment. In the new deregulated energy market and considering the incentives coming from the technical and economical fields, it is reasonable to consider Distributed Generation (DG) as a viable option to solve the lacking electric power supply problem. This paper presents a mathematical distribution system planning model considering three planning options to system expansion and to meet the load growth requirements with a reasonable price as well as the system power quality problems. DG is introduced as an attractive... 

    A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 3 , 2010 , Pages 275-287 ; 10286284 (ISSN) Porkar, S ; Abbaspour Tehrani Fard, A ; Poure, P ; Saadate, S ; Sharif University of Technology
    2010
    Abstract
    Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives coming from the technical and economic fields, it is reasonable to consider Distributed Generation (DG) as a viable option for systems reinforcement in competition with voltage regulator devices, to solve the lacking electric power supply problem and meet the load growth requirements with a reasonable price as well as the system power quality problems. The problem of optimal placement and size is formulated in two stages; minimization of... 

    Decentralized load sharing in a low-voltage direct current microgrid with an adaptive droop approach based on a superimposed frequency

    , Article IEEE Journal of Emerging and Selected Topics in Power Electronics ; Volume 5, Issue 3 , 2017 , Pages 1205-1215 ; 21686777 (ISSN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    Conventional droop methods for load sharing control in low-voltage direct current microgrids suffer from poor power sharing and voltage regulation, especially in the case when operating many dc sources with long feeders. Hence, the communication-based approaches are employed to improve the load sharing accuracy and voltage regulation. To avoid using such an infrastructure and the corresponding effects on the reliability and stability, an adaptive droop controller based on a superimposed frequency is proposed in this paper. Load sharing accuracy is improved by adapting the droop gains utilizing an introduced ac power. The secondary controller locally estimates and compensates the voltage drop... 

    Synchronverter-enabled DC power sharing approach for LVDC microgrids

    , Article IEEE Transactions on Power Electronics ; Volume 32, Issue 10 , 2017 , Pages 8089-8099 ; 08858993 (ISSN) Peyghami, S ; Davari, P ; Mokhtari, H ; Loh, P. C ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    In a classical ac microgrid (MG), a common frequency exists for coordinating active power sharing among droop-controlled sources. Like the frequency-droop method, a voltage-based droop approach has been employed to control the converters in low voltage direct current (LVDC) MGs. However, voltage variation due to the droop gains and line resistances causes poor power sharing and voltage regulation in dc MG, which in most cases are solved by a secondary controller by using a communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes a new droop scheme to control dc sources by introducing a small ac voltage superimposed onto the output dc... 

    On secondary control approaches for voltage regulation in DC microgrids

    , Article IEEE Transactions on Industry Applications ; Volume 53, Issue 5 , 2017 , Pages 4855-4862 ; 00939994 (ISSN) Peyghami, S ; Mokhtari, H ; Davari, P ; Loh, P. C ; Blaabjerg, F ; Sharif University of Technology
    Abstract
    Centralized or decentralized secondary controller is commonly employed to regulate the voltage drop raised by the primary controller. However, in the case of high capacity microgrids (MGs) and long feeders with much voltage drop on the line resistances, the conventional methods may not guarantee the voltage regulation on the load busses within a suitable range. Therefore, in addition to compensate the voltage drop of the primary controller, it is necessary to regulate the voltage of critical loads. In this paper, a new voltage regulation strategy is proposed to regulate the voltage of MG by employing the average voltage of identified critical busses, which are determined by the proposed... 

    Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters

    , Article IEEE Transactions on Smart Grid ; Volume 9, Issue 6 , 2018 , Pages 6480-6488 ; 19493053 (ISSN) Peyghami, S ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Applying conventional dc-voltage-based droop approaches for hybrid ac/dc microgrids interconnected by a single interlinking converter (IC) can properly manage the power flow among ac and dc subgrids. However, due to the effect of line resistances, these approaches may create a circulating power as well as overstressing the ICs in the case of employing multiple ICs for interconnecting the ac and dc subgrids. This paper proposes an autonomous power sharing approach for hybrid microgrids interconnected through multiple ICs by introducing a superimposed frequency in the dc subgrid. Hence, a suitable droop approach is presented to manage the power among the dc and ac sources as well as ICs. The... 

    Distributed Primary and secondary power sharing in a droop-controlled lvdc microgrid with merged AC and DC characteristics

    , Article IEEE Transactions on Smart Grid ; Volume 9, Issue 3 , 2018 , Pages 2284-2294 ; 19493053 (ISSN) Peyghami, S ; Mokhtari, H ; Loh, P. C ; Davari, P ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In an ac microgrid, a common frequency exists for coordinating active power sharing among droop-controlled sources. A common frequency is absent in a dc microgrid, leaving only the dc source voltages for coordinating active power sharing. That causes sharing error and poorer voltage regulation in dc microgrids, which in most cases, are solved by a secondary control layer reinforced by an extensive communication network. To avoid such an infrastructure and its accompanied complications, this paper proposes an alternative droop scheme for low-voltage dc microgrid with both primary power sharing and secondary voltage regulation merged. The main idea is to introduce a non-zero unifying frequency... 

    Decentralized droop control in DC microgrids based on a frequency injection approach

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 6 , 2019 , Pages 6782-6791 ; 19493053 (ISSN) Peyghami, S ; Davari, P ; Mokhtari, H ; Blaabjerg, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Power sharing control among grid forming dc sources employing a conventional voltage droop approach meets inaccurate load sharing and unacceptable voltage regulation performance. Thereby, communication-based secondary and supervisory controllers have been presented to overcome the aforementioned issues. Furthermore, with the aim of eliminating communication system, frequency-based droop approaches have been introduced for low-voltage dc grids where the frequency of the superimposed ac signal onto the dc voltage is proportional to the output power. However, in reality, dc grid structures can be applied to medium and high voltage applications with different X/R ratios. This paper generalizes... 

    Optimal controller design for 3D manipulation of buoyant magnetic microrobots via constrained linear quadratic regulation approach

    , Article Journal of Micro-Bio Robotics ; Volume 15, Issue 2 , 2019 , Pages 105-117 ; 21946418 (ISSN) Pedram, A ; Nejat Pishkenari, H ; Sitti, M ; Sharif University of Technology
    Springer  2019
    Abstract
    We consider magnetic actuation and control of a spherical neutrally buoyant magnetic microrobot via magnetic coil setups and seek to design an optimal controller to reduce the required energy and coils’ currents. We showed that in currently employed setups, where the actuation frequency is few tens of Hertz, the nonlinear dynamics of the system can be well approximated by a set of linear constrained ones. The approximated model is obtained by consciously overlooking the rotational dynamics and the inertia terms in translational dynamics. We acquired the linear quadratic regulation (LQR) controller for the approximated model which is a constrained time-varying system. Finally, 3D manipulation... 

    Distribution of seismic damage in steel buildings component equipped by viscoelastic dampers against far-field earthquake

    , Article Shock and Vibration ; Volume 2021 , 2021 ; 10709622 (ISSN) Parvin Darabad, Y ; Hassanpour Yasaghi, A ; Khodaei, B ; Zarei, R ; Sharif University of Technology
    Hindawi Limited  2021
    Abstract
    Damage to structures with the concept of inelastic behavior and consequently hysteresis energy is very close. Therefore, it can be said that hysteresis energy at these levels can be a significant criterion for designing or controlling the structure. In this research, the first three steel frames of 4, 8, and 12 floors with the medium bending frame system have been designed with the statically equivalent method according to valid international regulations; then, all frames have been subjected to nonlinear dynamic analysis by seven accelerometers. The purpose of this study is to investigate the distribution of damage, energy, relative displacement, roof displacement, and base shear in the... 

    A low loss linear voltage regulator for high voltage dc power supplies based on adjustable inductors

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Osanlo, M ; Pouresmaeil, K ; Kaboli, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    High voltage power supplies are widely used in telecommunication systems. To better utilize these power supplies, voltage should be stabilized at a certain level. In this application, in case of changing voltage, the desired output parameters will change, such as RF output power quality. Various methods have been proposed to stabilize the voltage at acceptable levels. One of the most commonly used methods is use of switching regulators that are considered for high efficiency in comparison with linear regulators. But the use of these regulators also has problems. One of these problems is electromagnetic interference which is very important in telecommunication systems. Therefore, the need for... 

    Boundary control of a marine riser pipe conveying fluid

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 4A , 2014 ; ISBN: 9780791846476 Nojoumian, M. A ; Shirazi, M. J ; Salarieh, H ; Sharif University of Technology
    Abstract
    In this paper, the model of pipe conveying fluid, like marine risers, is modeled with the effect of the interaction between the fluid and structure. A torque is assumed at one end of the pipe to control the vibration of the pipe. The stability of the pipe under time varying disturbance in forced vibration using boundary control law is proved. Exponential stability can be achieved under the free vibration condition. The proposed control law is simple and could be attained by some simple sensors at the end of the pipe. The control law is independent from system parameters so the controller is robust to disturbances and environmental conditions. The controller is obtained via a Lyapunov...