Loading...
Search for: resonance
0.015 seconds
Total 954 records

    Hybrid modeling of quasi-resonant converters: A piecewise affine approach

    , Article 13th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2022, 1 February 2022 through 3 February 2022 ; 2022 , Pages 448-454 ; 9781665420433 (ISBN) Hasanisaadi, M ; Tahami, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    DC-DC quasi-resonant converters (QRC) have the advantage of reducing switching losses and electromagnetic interference (EMI) which are the main disadvantages of high frequency power converters. The control and stabilization of these converters have always been a challenge. Traditionally, the dynamical model of the QRC is obtained using state space averaging followed by linearization about an operating point. The major flaw of this method is that state variables have large variations; thus, the linearized averaged model is not valid. Therefore, it is necessary to obtain a more precise model for the aim of stability analysis and controller design. Due to semiconductors switching, QRCs are... 

    Improved resonant converter for dynamic wireless power transfer employing a floating-frequency switching algorithm and an optimized coil shape

    , Article IEEE Access ; Volume 10 , 2022 , Pages 56914-56924 ; 21693536 (ISSN) Ghohfarokhi, S. S ; Tarzamni, H ; Tahami, F ; Kyyra, J ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper offers a new EF-class converter for dynamic wireless power transfer application. The proposed high-frequency converter employs a floating-frequency switching algorithm to control the converter in a continuous frequency range, eliminate the requirement to any additional operational data from the secondary (receiver) side, accelerate the load impedance match while moving, maximize the transferred power rate, reduce charging interval and compensate power transfer tolerances. Moreover, an optimized super elliptical shape coil is designed to cope with lateral misalignment, enhance coil coupling, and increase efficiency. In the proposed converter, (i) soft switching is implemented to... 

    Efficacy of a novel bioactive glass-polymer composite for enamel remineralization following erosive challenge

    , Article International Journal of Dentistry ; Volume 2022 , 2022 ; 16878728 (ISSN) Fallahzadeh, F ; Heidari, S ; Najafi, F ; Hajihasani, M ; Noshiri, N ; Nazari, N. F ; Sharif University of Technology
    Hindawi Limited  2022
    Abstract
    Introduction. Dental caries is the most common cause of tooth loss. However, it can be stopped by enhancing remineralization. Fluoride and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) are among the most important remineralizing agents. Recent studies have used bioactive glass as a remineralizing agent in different forms. This study aimed to assess the efficacy of a composite paste (prepared by mixing urethane polypropylene glycol oligomer with bioactive glass powder for easier application). Materials and Methods. Enamel disks were cut out of the buccal surface of extracted sound third molars. The samples were randomly divided into 3 groups of 15 and underwent Vickers... 

    Label-Free real-time detection of HBsAg using a QCM immunosensor

    , Article Clinical Laboratory ; Volume 68, Issue 4 , 2022 , Pages 707-720 ; 14336510 (ISSN) Saffari, Z ; Ghavidel, A ; Ahangari Cohan, R ; Hamidi Fard, M ; Khoobi, M ; Aghasadeghi, M ; Norouzian, D ; Sharif University of Technology
    Verlag Klinisches Labor GmbH  2022
    Abstract
    Background: Hepatitis B virus surface antigen (HBsAg) is an important protein in both diagnosis and prevention of hepatitis B infection. In the current study, a piezoelectric immunosensor based on antibody-antigen interaction was designed to detect HBsAg. A quartz crystal microbalance system was employed to detect antibody-antigen interaction. Methods: At first, an oscillator was designed to measure the resonant frequency affected by the reactants using IC 74LVC1GX04. Antibody against HBsAg was immobilized on 10 MHz AT-cut quartz crystal. The surface modifications were monitored by atomic force microscopy (AFM) and contact angle measurements. Different concentrations of antibody were used... 

    Vibration control through the robust nonlinear absorber with negative stiffness and internal resonance creation

    , Article JVC/Journal of Vibration and Control ; 2022 ; 10775463 (ISSN) Harouni, P ; Khajeh Ahmad Attari, N ; Rahimzadeh Rofooei, F ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    In this study, a nonlinear absorber that works with a negative stiffness mechanism is suggested to mitigate vibration, and its effect on the reduction of vibration is investigated. The negative stiffness, which is inherently nonlinear, creates internal resonance; therefore, the vibration energy can be transmitted from low-frequency to high-frequency vibrating modes, causing vibration suppression. The nonlinear absorber is added to the primary nonlinear system, and when the main system is subjected to external resonance due to harmonic excitation, the negative stiffness parameter of absorber is so adjusted that autoparametric resonance occurs and vibration is reduced. First, the mathematical... 

    Effective promotion of g–C3N4 photocatalytic performance via surface oxygen vacancy and coupling with bismuth-based semiconductors towards antibiotics degradation

    , Article Chemosphere ; Volume 287 , 2022 ; 00456535 (ISSN) Hasanvandian, F ; Moradi, M ; Aghaebrahimi Samani, S ; Kakavandi, B ; Rahman Setayesh, S ; Noorisepehr, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, the potential of bismuth chromate (BCO), a new bismuth-based semiconductor belongs to the family of Bi2XO6 (X = Mo, W, or Cr), was introduced by a novel 1D/2D structure consist of BCO nanobelts and N2-freezed ultra-wrinkled graphitic carbon nitride (N–CN) nanosheets. To enhance intimate contact between BCO and N–CN (BCO/N–CN composite), surface oxygen vacancy (VO) was created as an efficient electron transfer highway using a simple alkaline-treatment-assisted method. Various characterization techniques, including XRD, FT-IR, EPR, FE-SEM, TEM, BET, DRS, PL, EIS, and photocurrent transient analyses were conducted to elucidate the physicochemical aspects of catalysts. The... 

    Simultaneous use of physical and chemical dispersants for electrical conductivity enhancement in polyamide 6/carbon nanotube/conductive carbon black hybrid nanocomposites

    , Article Polymer-Plastics Technology and Materials ; Volume 61, Issue 3 , 2022 , Pages 263-275 ; 25740881 (ISSN) Farhadpour, M ; Jahanaray, B ; Pircheraghi, G ; Bagheri, R ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Polyamide 6 (PA6)/carbon nanotube (CNT)/conductive carbon black (CCB) nanocomposites with the incorporation of physical and chemical dispersants were prepared via melt blending method to examine the synergistic enhancement of electrical conductivity. Investigation of modified CNT with octadecyl triphenyl phosphonium chloride (OTPC-CNT) as physical dispersant was performed by Fourier transform infrared, nuclear magnetic resonance, Raman spectroscopy, and thermogravimetric analysis. Morphological, electrical, rheological, and mechanical properties of PA6/CNT/CCB nanocomposites were examined by field emission scanning electron microscopy, transmission electron microscopy, digital insulation... 

    Effect of axonal fiber architecture on mechanical heterogeneity of the white matter—a statistical micromechanical model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 25, Issue 1 , 2022 , Pages 27-39 ; 10255842 (ISSN) Hoursan, H ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    A diffusion tensor imaging (DTI) -based statistical micromechanical model was developed to study the effect of axonal fiber architecture on the inter- and intra-regional mechanical heterogeneity of the white matter. Three characteristic regions within the white matter, i.e., corpus callosum, brain stem, and corona radiata, were studied considering the previous observations of locations of diffuse axonal injury. The embedded element technique was used to create a fiber-reinforced model, where the fiber was characterized by a Holzapfel hyperelastic material model with variable dispersion of axonal orientations. A relationship between the fractional anisotropy and the dispersion parameter of... 

    Identifying brain functional connectivity alterations during different stages of Alzheimer’s disease

    , Article International Journal of Neuroscience ; Volume 132, Issue 10 , 2022 , Pages 1005-1013 ; 00207454 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Purpose: Alzheimer's disease (AD) starts years before its signs and symptoms including the dementia become apparent. Diagnosis of the AD in the early stages is important to reduce the speed of brain decline. Aim of the study: Identifying the alterations in the functional connectivity of the brain during the disease stages is among the main important issues in this regard. Therefore, in this study, the changes in the functional connectivity during the AD stages were analyzed. Materials and methods: By employing the functional magnetic resonance imaging (fMRI) data and graph theory, weighted undirected graphs of the whole-brain and default mode network (DMN) network were investigated... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently... 

    Robust registration of medical images in the presence of spatially-varying noise

    , Article Algorithms ; Volume 15, Issue 2 , 2022 ; 19994893 (ISSN) Abbasi Asl, R ; Ghaffari, A ; Fatemizadeh, E ; Sharif University of Technology
    MDPI  2022
    Abstract
    Spatially-varying intensity noise is a common source of distortion in medical images and is often associated with reduced accuracy in medical image registration. In this paper, we propose two multi-resolution image registration algorithms based on Empirical Mode Decomposition (EMD) that are robust against additive spatially-varying noise. EMD is a multi-resolution tool that decomposes a signal into several principle patterns and residual components. Our first proposed algorithm (LR-EMD) is based on the registration of EMD feature maps from both floating and reference images in various resolutions. In the second algorithm (AFR-EMD), we first extract a single average feature map based on EMD... 

    Aperiodic perforated graphene in optical nanocavity absorbers

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 276 , 2022 ; 09215107 (ISSN) Bidmeshkipour, S ; Akhavan, O ; Salami, P ; Yousefi, L ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Aperiodic perforated graphene layers were synthesized and used in fabrication of optical nanocavity absorbers. Chemical vapor deposition-grown graphene (Gr) layers were exposed to oxygen plasma etching to obtain the perforated graphene (pGr). The fabricated pGr/SiO2 (68 nm)/Ag (150 nm) nanocavity could present significant higher optical absorption, especially at around 530 nm wavelength region, as compared to a benchmark Gr/SiO2 (68 nm)/Ag (150 nm) sample. The effect of pore size of the pGr layer on the absorption property of the nanocavity has been studied by both experimental and numerical methods. The dependence of the absorption property of the nanocavity on the incident angles of... 

    Coordinated multivoxel coding beyond univariate effects is not likely to be observable in fMRI data

    , Article NeuroImage ; Volume 247 , 2022 ; 10538119 (ISSN) Pakravan, M ; Abbaszadeh, M ; Ghazizadeh, A ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Simultaneous recording of activity across brain regions can contain additional information compared to regional recordings done in isolation. In particular, multivariate pattern analysis (MVPA) across voxels has been interpreted as evidence for distributed coding of cognitive or sensorimotor processes beyond what can be gleaned from a collection of univariate effects (UVE) using functional magnetic resonance imaging (fMRI). Here, we argue that regardless of patterns revealed, conventional MVPA is merely a decoding tool with increased sensitivity arising from considering a large number of ‘weak classifiers’ (i.e., single voxels) in higher dimensions. We propose instead that ‘real’ multivoxel... 

    A facile one-pot, four-component synthesis of (Z)-isomer of rhodanine-oxindole derivatives under environmentally benevolent conditions

    , Article Synthetic Communications ; Volume 52, Issue 2 , 2022 , Pages 175-184 ; 00397911 (ISSN) Moghaddam, F. M ; Aghamiri, B ; Jalalinik, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Herein, an efficient and sustainable one-pot, four-component access to rhodanine-oxindole derivatives is achieved by a reaction between primary amines, carbon disulfide, ethyl chloroacetate, and cyano-substituted alkenyl oxindoles. The reaction was conducted without any harsh conditions as well as exhausting workup in polyethylene glycol (PEG) as a green solvent at room temperature and delivered rhodanine-oxindole products in high yield. This publication is the first easy protocol to be reported for the rapid construction of new rhodanine-oxindole derivatives at room temperature without harsh conditions and via multicomponent reaction. © 2021 Taylor & Francis Group, LLC  

    A dual-band circularly polarized antenna using a metallized ferrite disk

    , Article Journal of Magnetism and Magnetic Materials ; Volume 539 , 2021 ; 03048853 (ISSN) Bagheri, A ; Tavakol, M. R ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We have designed and fabricated a dual-band circularly polarized antenna using a normally magnetized ferrite disk. The disk is metallized on top and is mounted on a grounded dielectric substrate. A hole is then punched at the center of the top metallization. The dual band operation of the antenna is due to two separate unidirectional resonances. The field intensity at the lower resonance is largest close to the outer periphery of the disk whereas at the higher resonance the electromagnetic field is concentrates near the punched hole. A two-section feeding network is used to feed the antenna. Central frequencies of the upper and lower bands are 4.62 GHz and 5.97 GHz, respectively.... 

    ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes

    , Article Optik ; Volume 237 , 2021 ; 00304026 (ISSN) Baqir, M. A ; Choudhury, P. K ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The absorption characteristics of zirconium nitride (ZrN)-based metamaterial absorber of fractal geometry are studied. The proposed absorber is comprised of fractal metasurface at the top having subwavelength-sized periodic pattern of specially designed ZrN circular nano-discs arranged over silicon dioxide (SiO2) substrate. A tri-layer graphene, owing to its exhibiting better tunability, is introduced at the interface of metasurface and substrate. The bottom side of SiO2 is coated with silver nanolayer to block transmission. The absorptivity essentially depends on the kind of fractal design used in metasurface to configure the absorber. The obtained results exhibit the absorption... 

    WLFS: Weighted label fusion learning framework for glioma tumor segmentation in brain MRI

    , Article Biomedical Signal Processing and Control ; Volume 68 , 2021 ; 17468094 (ISSN) Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Glioma is a common type of tumor that develops in the brain. Due to many differences in the shape and appearance, accurate segmentation of glioma for identifying all parts of the tumor and its surrounding tissues in cancer detection is a challenging task in cancer detection. In recent researches, the combination of atlas-based segmentation and machine learning methods have presented superior performance over other automatic brain MRI segmentation algorithms. To overcome the side effects of limited existing information on atlas-based segmentation, and the long training and the time consuming phase of learning methods, we proposed a semi-supervised learning framework by introducing a... 

    Even-Harmonic class-E CMOS oscillator

    , Article IEEE Journal of Solid-State Circuits ; 2021 ; 00189200 (ISSN) Barzgari, M ; Ghafari, A ; Nikpaik, A ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This article proposes the theory and implementation of an even-harmonic class-E CMOS oscillator that displays an excellent phase noise performance. Starting from zero voltage switching (ZVS) and zero derivative switching (ZDS) conditions, expressions for drain voltage and current waveforms are derived. Based on a 1:1 transformer, a custom-designed tank is proposed, which satisfies ZVS and ZDS conditions for the core transistors, provides high-Q resonances at both fundamental and second harmonics of the oscillation frequency, and yields a passive voltage gain from the drain to the gate of the core transistors. Satisfying ZVS and ZDS conditions reduces the overlap between the voltage and... 

    A hybrid control approach for LLC resonant converter

    , Article 12th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2021, 2 February 2021 through 4 February 2021 ; 2021 ; 9780738111971 (ISBN) Barzkar, A ; Tahami, F ; Barzkar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    In this paper, a novel hybrid control approach is proposed to control the LLC resonant converter. Since the converter consists of both continuous variables and logical variables, it is intrinsically hybrid. Apart from that, because of fast dynamics of the converter and the fact that there is no closed form solution for discontinuous conduction modes (DCM), modeling and control of the LLC resonant converter is still a challenge. In the authors' previous work, a systematic model was proposed for the converter, the direct piecewise affine model. In this paper, an appropriate controller based on the proposed model is represented and the design procedure is discussed in details; the block diagram... 

    A novel omega shaped microwave absorber with wideband negative refractive index for C-band applications

    , Article Optik ; Volume 242 , 2021 ; 00304026 (ISSN) Bilal, R. M. H ; Baqir, M. A ; Iftikhar, A ; Ali, M. M ; Rahim, A. A ; Niaz Akhtar, M ; Mughal, M. J ; Naqvi, S. A ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    This paper reports a polarization controllable and angle-insensitive perfect metamaterial absorber (PMA). The proposed PMA consists of periodically arranged asymmetric omega-shaped resonators made of metallic copper. The absorptivity was analyzed considering the microwave C-band from 4 GHz to 8 GHz. The proposed PMA shows an absorption peak with almost 100% absorptivity at 6.2 GHz. Also, wideband negative index of refraction is observed. Further, the absorber is inspected for the different rotation angles of the top metasurface (omega-shaped ring) along the optical axis, and obliquity of incidence angle for both TE and TM polarized waves. Moreover, surface electric field and surface current...