Loading...
Search for: reynolds-number
0.021 seconds
Total 328 records

    Three-dimensional analysis of fluid flow and heat transfer in the microchannel heat sink using additive-correction multigrid technique

    , Article 1st ASME Micro/Nanoscale Heat Transfer International Conference, MNHT08, Tainan, 6 January 2008 through 9 January 2008 ; Volume Parts A and B , 2008 , Pages 679-689 ; 0791842924 (ISBN); 9780791842928 (ISBN) Asgari, O ; Saidi, M. H ; Sharif University of Technology
    2008
    Abstract
    Heat generation from very large-scale integrated (VLSI) circuits increases with the advent of high-density integrated circuit technology. One of the promising techniques is liquid cooling by using microchannel heat sink. Numerical works on the microchannel heat sink in the literature are mostly two dimensional. The purpose of the present study is to develop a three-dimensional analysis procedure to investigate flow and conjugate heat transfer in the microchannel-based heat sink for electronic packaging applications. The micro-heat sink model consists of a 10 mm long silicon substrate, with rectangular microchannels, 57 μm wide and 180 μm deep, fabricated along the entire length. A finite... 

    The unsteady behavior of subsonic wind tunnel wall pressure during pitching motion of the model

    , Article Scientia Iranica ; Vol.21, issue.1 , 2014 , p. 192-202 ; 10263098 Davari, A. R ; Soltani, M. R ; Ghaeminasab, M ; Sharif University of Technology
    Abstract
    Extensive low speed wind tunnel experiments have been undertaken to measure the test section, oor wall pressure distribution, in the presence of a 2D wing inside the test section. The experiments were performed for both the static and dynamic pitching motion of the model under difierent conditions. In these measurements, the efiects of the existence and oscillations of a 2D wing on the oor wall pressure at various locations were studied. According to the results, as the oscillation parameters, such as mean angle of attack and frequency, change, wall pressures at the points located in the front part of the test section, in the upstream region, exhibit difierent behavior from those in the... 

    The simulations of flow and heat over microscale sensors in supersonic rarefied gas flows using DSMC

    , Article ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, 4 January 2016 through 6 January 2016 ; Volume 2 , 2016 ; 9780791849668 (ISBN) Darbandi, M ; Mosayebi, G ; Sharif University of Technology
    American Society of Mechanical Engineers 
    Abstract
    As the use of MEMS-based devices and systems are continuously increasing, the understanding of their correct characteristics becomes so serious for the related researches. In this study, the supersonic rarefied gas flow over microscale hotwires is investigated using the Direct Simulation Monte Carlo (DSMC) method. Indeed, the DSMC has been accepted as a powerful method to study the rarefied gas flow especially in transitional regime. Therefore, it can be considered as a reliable method to investigate the rarefied supersonic flow over microscale objects including the microscale hotwires. In this work, we study the effective parameters, which affect the performance of these sensors at constant... 

    Thermo-hydraulic performance enhancement of nanofluid-based linear solar receiver tubes with forward perforated ring steps and triangular cross section; a numerical investigation

    , Article Applied Thermal Engineering ; Volume 169 , March , 2020 Mahmoudi, A ; Fazli, M ; Morad, M. R ; Gholamalizadeh, E ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Cylindrical pipes are installed to a line-focusing solar system with a linear receiver tube for transmitting thermal energy to the working fluid. In this study, the effects of a novel forward ring step inside circular pipes on the heat transfer performance of linear solar receiver tubes were investigated using computational fluid dynamics. The rings are perforated, and their cross section is triangular. Although the applied heat flux is consistent with a solar collector with a linear receiver tube, the analysis can be performed for any given heat flux distribution on circular pipes. The model was verified by comparing the predicted Nusselt numbers to those of the Gnielinski correlation, and... 

    Thermal study of the internal flow in a circular tube with vibrational ball turbulators

    , Article International Journal of Heat and Mass Transfer ; Volume 196 , 2022 ; 00179310 (ISSN) Saadat, M ; Aghlichanche, A ; Ataelahi, A ; Mohammadi, O ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Flow turbulators have promising heat transfer applications. Here, the novel design proposed in our previous study (vibrational ball turbulators, VBTs, mounted on an elastic wire inside a circular tube) is investigated experimentally from heat transfer and thermal performance standpoints. The effects of diameter (Y) and longitudinal distance (pitch, X) ratios of VBTs, the Reynolds number, and the axial tension of the wire (σ0) on the average Nusselt number (Nu), the average Nusselt number ratio (Nu divided by that of a plain tube, Nup), the friction factor ratio (f/fp), and a parameter called the thermal performance factor (η=(Nu/Nup)/(f/fp)1/3) are studied. Different ball diameter (Y=0.3,... 

    Thermal, thermodynamic and exergoeconomic investigation of a parabolic trough collector utilizing nanofluids

    , Article Applied Thermal Engineering ; Volume 206 , 2022 ; 13594311 (ISSN) Vahedi, B ; Golab, E ; Nasiri Sadr, A ; Vafai, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The exploitation of solar energy facilitates the renewable energy paradigm. In this regard, parabolic trough collectors (PTC) are considered as a useful set-up to absorb solar energy. Simultaneous study of thermal, thermodynamic, and exergoeconomic performance of PTC systems paves the way for designers and manufacturers to not only have a better insight into understanding the underlying concepts about the operation of PTC systems but also to find the most effective and cost-effective circumstances. This study aims at analyzing a practical PTC system by considering an evacuated absorber tube with glass cover, non-uniform heat flux, and taking into account the convective and radiative heat... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144 , February , 2020 , 167–178 Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 144, Issue 1 , 2021 , Pages 167-178 ; 13886150 (ISSN) Jafari, M ; Farajollahi, A ; Gazori, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure... 

    The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets

    , Article Chemical Engineering Science ; Volume 206 , 2019 , Pages 235-248 ; 00092509 (ISSN) Kashanj, S ; Kebriaee, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This experimental study investigated the patterns and characteristics of the liquid sheet formed by two axial misaligned colliding jets and two colliding jets with different velocities. The tests were limited to the low Reynolds number region, 100

    Temperature distribution on a gas turbine shaft exposed to swirl combustor flue

    , Article Journal of Thermophysics and Heat Transfer ; Volume 29, Issue 2 , 2015 , Pages 319-328 ; 08878722 (ISSN) Aghakashi, V ; Saidi, M. H ; Mozafari, A. A ; Keshavarz, P ; Sharif University of Technology
    Abstract
    A gas turbine shaft is generally exposed to high-temperature gases and may seriously be affected and overheated duetotemperature fluctuationsinthe combustion chamber. Vortex flow inthe combustion chamber may increase the heat release rate and combustion efficiency, as well as control the location of energy release. However, this may result in excessive temperature on the combustor equipment and gas turbine shaft. In this study, a new gas turbine combustion chamber implementing a liner around the shaft and the liquid-fuel feeding system is designed and fabricated. The influences of parameters such as the Reynolds number and the equivalence ratio are studied. Experimental results are compared... 

    Surface wettability effect on the rising of a bubble attached to a vertical wall

    , Article International Journal of Multiphase Flow ; Volume 109 , 2018 , Pages 178-190 ; 03019322 (ISSN) Javadi, K ; Davoudian, S. H ; Sharif University of Technology
    Abstract
    This paper deals with the dynamics of rising bubbles attached to a vertical wall under different wettability conditions. Even though, bubbles rising freely in a liquid have extensively been studied, bubbles attached to a wall have not been fully understood. Therefore, in this work, rising bubbles attached to a vertical wall were numerically investigated by applying the ALE method along with adaptive mesh refinement schemes to properly resolve the bubble interface and its deformation. To consider wall wettability effects, different contact angles of 45° 90° and 105° were considered along with the case of freely rising bubbles. The problem was carried out at different Bond numbers of 0.27,... 

    Superhydrophobic surfaces with a dual-layer micro- and nanoparticle coating for drag reduction

    , Article Energy ; Volume 125 , 2017 , Pages 1-10 ; 03605442 (ISSN) Taghvaei, E ; Moosavi, A ; Nouri Borujerdi, A ; Daeian, M. A ; Vafaeinejad, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    We propose a facile and cost effective method for fabricating superhydrophobic surfaces with significant drag reduction in a wide velocity range. A dual structure superhydrophobic aluminum surface with a hydrophobic Al2O3micro- and nanoparticle coating and also another superhydrophobic surface with a nanoparticle layer coating are fabricated. Then, the resulted drag from each of these surfaces is measured carefully in different velocities and compared with the drag of the as-received aluminum surface. Our results reveal that the surface with the dual structure experiences drag reduction in a wider velocity range compared with the nanoparticle coated sample. Drag reduction of the dual... 

    Stress-jump and Continuity Interface Conditions for a Cylinder Embedded in a Porous Medium

    , Article Transport in Porous Media ; Volume 107, Issue 1 , 2015 , Pages 171-186 ; 01693913 (ISSN) Rashidi, S ; Nouri Borujerdi, A ; Valipour, M. S ; Ellahi, R ; Pop, I ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    The selection of interface boundary conditions between porous-medium and clear-fluid regions is very important for the wide range of engineering applications. In this paper, the difference between two common types of fluid flow interfacial conditions between clear fluid and porous medium is analyzed in detail. These two types of fluid flow interfacial condition are stress-jump and stress-continuity conditions. The effects of porosity on these types of interface condition are studied. The results are presented for different Reynolds numbers in the range 1–40, porosity equal to 0.4 and 0.8 and Darcy number Da=5×10-4. In this study, the Darcy–Brinkmann–Forchheimer model is used to model the... 

    Stream-wise and cross-flow vortex induced vibrations of single tapered circular cylinders: An experimental study

    , Article Applied Ocean Research ; Volume 42 , 2013 , Pages 124-135 ; 01411187 (ISSN) Zeinoddini, M ; Tamimi, V ; Saeed Seif, M ; Sharif University of Technology
    2013
    Abstract
    Tapered circular cylinders are employed in a variety of ocean engineering applications. While being geometrically simple, this configuration creates a complex flow pattern in the near wake of the structure. Most previous experimental studies on tapered circular cylinders were dealing with stationary cylinders to explore the wake flow field and vortex shedding patterns past the cylinder. Few studies paid attentions to the vortex induced vibration of the tapered cylinders. This paper reports some results from in-water towing-tank experiments on the vortex-excited vibrations of tapered circular cylinders in a uniform flow. Cylinders with different mean diameters (28 and 78 mm), mass ratios (6.1... 

    Stochastic nature of series of waiting times

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 87, Issue 6 , 2013 ; 15393755 (ISSN) Anvari, M ; Aghamohammadi, C ; Dashti Naserabadi, H ; Salehi, E ; Behjat, E ; Qorbani, M ; Khazaei Nezhad, M ; Zirak, M ; Hadjihosseini, A ; Peinke, J ; Tabar, M. R. R ; Sharif University of Technology
    2013
    Abstract
    Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2

    Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 535 , 2019 ; 03784371 (ISSN) Razavi Dehkordi, M. H ; Soltani, M. R ; Davari, A. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, an extensive experimental tests were performed to determine the aerodynamic characteristics of an airfoil undergoing static, dynamic pitch, dynamic plunge and dynamic combined pitch and plunge motions for various cases. This paper, however, focuses on the effects of reduced frequencies and mean angles of attack on the surface pressure distribution and on the corresponding lift of the airfoil oscillating in either pure pitch or in combined pitch–plunge motions. The angles of attack variations were set such that the model motion would be ceased lower than the static stall, near the static stall and beyond the static stall angles of attack. All tests were conducted at a constant... 

    SPH simulation of interacting solid bodies suspended in a shear flow of an Oldroyd-B fluid

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 166, Issue 21-22 , November , 2011 , Pages 1239-1252 ; 03770257 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    2011
    Abstract
    An explicit weakly compressible SPH method is introduced to study movement of suspended solid bodies in Oldroyd-B fluid flows. The proposed formulation does not need further stabilizing treatments and can be efficiently employed to study particulate flows with Deborah to Reynolds number ratios up to around 10. A modified boundary treatment technique is also presented which helps to deal with the movement of solid particles in the flow. The technique is computationally efficient and gives an improved evaluation of fluid-solid interaction forces.A number of test cases are solved to show performance of the proposed method in simulating particulate viscoelastic flows containing circular and... 

    Solution of burgers' equation using a local-rbf meshless method

    , Article International Journal of Computational Methods in Engineering Science and Mechanics ; Volume 12, Issue 1 , Feb , 2011 , Pages 44-58 ; 15502287 (ISSN) Hosseini, B ; Hashemi, R ; Sharif University of Technology
    2011
    Abstract
    A local radial basis function (RBF) meshless method is applied for solution of the Burgers' equation with different initial and boundary conditions of various complexities. Local-RBF collocation is employed for discretization in space, whilst the unsteady term is handled via a simple explicit time discretization. Moreover, in case of non-smooth initial conditions with high Reynolds numbers, a treatment is proposed for inability of local-RBF methods to solve such problems. The scheme is validated over a variety of benchmark problems and very good agreement is found with existing analytical and numerical solutions  

    Solid-liquid catalytic reactions in a new two-impinging-jets reactor: Experiment and modeling

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 6 , 2009 , Pages 2861-2869 ; 08885885 (ISSN) Dehkordi, A. M ; Safari, I ; Ebrahimi, A. A ; Sharif University of Technology
    2009
    Abstract
    Novel type of two-impinging-jets loop reactor (TIJLR) has been proposed and tested successfully for the solid-liquid catalytic reactions. The TIJLR was tested using the catalytic reaction of isomerization of D-glucose to D-fructose by immobilized glucose isomerase catalyst as a typical model system of solid-liquid catalytic reactions. The TIJLR is characterized by a high intensity reaction chamber, which is separated by a perforated plate from other parts of the reactor. The perforated plate was used as a filter to keep the catalyst particles within the reaction chamber. A compartment model with two adjustable parameters was considered to describe the pattern of flow within the reaction... 

    Simulation of turbulent swirling flow in convergent nozzles

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 258-265 ; 10263098 (ISSN) Nouri-Borujerdi, A ; Kebriaee, A ; Sharif University of Technology
    Abstract
    This work simulates the turbulent boundary layer of an incompressible viscous swirling flow through a conical chamber. To model the pressure gradient normal to the wall, the radial and tangential velocity components across the boundary layer have been calculated by both the integral and numerical methods. The numerical solution is accomplished by finite difference, based on the finite volume method. The results show that the radial and tangential boundary layer thicknesses depend on the velocity ratios, Reynolds number and nozzle angle. The peak of radial and tangential boundary layer thicknesses are located at zL≈0.2 and zL≈0.8 from the nozzle inlet, respectively. Due to the short length of...