Loading...
Search for:
scaffolds--biology
0.009 seconds
Total 80 records
Glucose cross-linked hydrogels conjugate HA nanorods as bone scaffolds: Green synthesis, characterization and in vitro studies
, Article Materials Chemistry and Physics ; Volume 242 , 2020 ; Shafiei, N ; Mohandes, F ; Dolatyar, B ; Zandi, N ; Zeynali, B ; Simchi, A ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
In the expanding field of tissue engineering (TE), improvement of biodegradability and osteoconductivity of biomaterials are required. The use of non-toxic reagents during manufacturing processes is also necessary to decrease toxicity and increase cell viability in vivo. Herein, we present a novel approach to prepare hydroxyapatite (HA) nanorods from sea bio-wastes through a green and eco-friendly wet-chemical processing for bone TE. Highly porous natural polymer-ceramic nanocomposites made of HA, gelatin (Ge) and carboxymethyl cellulose (CMC) hydrogels are then introduced. It was found that cross-linking of the hydrogel matrix by glucose as a green reagent affected all characteristics of...
In situ synthesized TiO2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation
, Article Materials Science and Engineering C ; Volume 114 , May , 2020 ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
The in vitro endothelial response of human umbilical vein endothelial cells was investigated on a poly (caprolactone)-based polyurethane surface vs an in situ TiO2-polyurethane nanocomposite surface, which has been produced as scaffolds for artificial vascular graft. The in situ synthesis of TiO2 nanoparticles in polyurethane provided surface properties that facilitated cellular adhesion, cell sensing, cell probing and especially cell migration. Cells on the nanocomposite surface have elongated morphology and were able to produce more extracellular matrix. All of these advantages led to an increase in the rate of endothelialization of the nanocomposite scaffold surface vs pure polyurethane....
Bioengineering approaches for corneal regenerative medicine
, Article Tissue Engineering and Regenerative Medicine ; Volume 17, Issue 5 , July , 2020 , Pages 567-593 ; Abdekhodaie, M. J ; Mashayekhan, S ; Baradaran Rafii, A ; Djalilian, A. R ; Sharif University of Technology
Korean Tissue Engineering and Regenerative Medicine Society
2020
Abstract
Background:: Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. Methods:: In this review, we first discussed the anatomy of the cornea and the required properties for...
Both tough and soft double network hydrogel nanocomposite based on o-carboxymethyl chitosan/poly(vinyl alcohol) and graphene oxide: a promising alternative for tissue engineering
, Article Polymer Engineering and Science ; Volume 60, Issue 5 , 2020 , Pages 889-899 ; Mazaheri Tehrani, Z ; Salami, H ; Seidi, F ; Motamedi, A ; Amanzadi, A ; Zayerzadeh, E ; Shabanian, M ; Sharif University of Technology
John Wiley and Sons Inc
2020
Abstract
A reinforced double network (DN) hydrogel as a candidate for skin scaffold was prepared. It consists of O-carboxymethyl chitosan, polyvinyl alcohol, honey, CaCl2, and graphene oxide. The various concentrations of CaCl2, namely, 30, 45, and 60 wt% were investigated. Besides, the GO content was studied as 3, 5, and 10 wt%. The structure of the DN was characterized by Fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, energy dispersive X-ray and Brunauer-Emmett-Teller were evaluated. The mechanical properties were studied, too. It showed that the DN with 45 wt% CaCl2 was optimized. Also, swelling mechanism was investigated....
Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery
, Article Materials Science and Engineering C ; Volume 113 , 2020 ; Jooybar, E ; Abdekhodaie, M. J ; Alvi, M ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
In this study, a three-dimensional tablet-like porous scaffold, comprising core-shell fibers to host proteins inside the core, was developed. The fabrication method involved the novel combination of coaxial and wet electrospinning in a single setting. Poly (ε-caprolactone) was chosen as the based polymer and bovine serum albumin was used as a model protein. These 3D tablet-like scaffolds exhibited adequate porosity and suitable pore size for cell culture and cell infiltration, in addition to appropriate mechanical properties for cartilage tissue engineering. The effects of different parameters on the behavior of the system have been studied and the 3D scaffold based on the core-shell fiber...
Numerical and analytical simulation of multilayer cellular scaffolds
, Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 42, Issue 5 , 2 May , 2020 ; Rahmati, S ; Nikkhoo, M ; Haghpanahi, M ; Akbari, J ; Sharif University of Technology
Springer
2020
Abstract
Due to the advent and maturity of the additive manufacturing technology, it is possible now to construct complex microstructures with unprecedented accuracy. In addition, to the influence of network unit cell types and porosities in recent years, researchers have studied the number of scaffold layers fabricated by additive manufacturing on mechanical properties. The objective of this paper is to assess the numerical and analytical simulations of the multilayer scaffolds. For this purpose, 54 different regular scaffolds with a unit cell composed of multilayer scaffolds were simulated under compressive loading and compared with the analytical relationships based on the Euler–Bernoulli and...
The effect of Ag incorporation on the characteristics of the polymer derived bioactive silicate phosphate glass-ceramic scaffolds
, Article Boletin de la Sociedad Espanola de Ceramica y Vidrio ; 2021 ; 03663175 (ISSN) ; Godary, T ; Khalilifard, R ; Malek Khachatourian, A ; Abdollahi, F ; Abdollahi, S ; Sharif University of Technology
Sociedad Espanola de Ceramica y Vidrio
2021
Abstract
In the bone tissue engineering field (BTE), it is of significant importance to develop bioactive multifunctional scaffolds with enhanced osteoconductivity, osteoinductivity, and antibacterial properties required for lost bone tissue regeneration. In this work, a bioactive glass-ceramic scaffold was manufactured via a novel polymer-derived ceramics (PDC) manufacturing method. To gain antibacterial properties, the silver ions were incorporated in controlled amount along with other precursors in the PDC processing stage. Microstructural and structural properties of the fabricated silicate-phosphate glass-ceramic scaffold were evaluated by scanning electron microscopy (SEM) equipped with energy...
Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds
, Article Materials Chemistry and Physics ; Volume 272 , 2021 ; 02540584 (ISSN) ; Panahi, M ; Akhavan, O ; Mansoorianfar, M ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Multi-component nanocomposite thin films (composed of cellulose nanofiber (CNF), alginate, bioglass nanoparticles (BG NPs) and gentamicin) were prepared by using cathodic electrophoretic deposition (EPD) under different isostatic pressures of 10−2 mbar (LP), atmospheric (AP), and 5 bar (HP). According to thermal gravity analysis, larger amounts of CNF and alginate could be deposited on the surface at the AP condition in comparison with the LP and HP conditions. On the other hand, higher amounts of the BG NPs could be deposited at the LP condition as compared to the other conditions. The drug (gentamicin) loading/releasing of the samples prepared at the HP condition was found to be higher...
Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering
, Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
American Chemical Society
2021
Abstract
The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials...
The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method
, Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase....
The fabrication and characterization of bioactive Akermanite/Octacalcium phosphate glass-ceramic scaffolds produced via PDC method
, Article Ceramics International ; Volume 47, Issue 5 , 2021 , Pages 6653-6662 ; 02728842 (ISSN) ; Paryab, A ; Khalilifard, R ; Anousheh, M ; Malek Khachatourian, A ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
In the present study, a bioactive silicate-phosphate glass-ceramic scaffold was fabricated via the polymer-derived ceramics (PDC) method. K2HPO4 phosphate salt was used as the P2O5 precursor in this method. The effect of K2HPO4 wt% and heat treatment temperatures (900–1100 °C) was evaluated. It was observed that although increasing the wt% of K2HPO4 led to the formation of scaffolds with higher densities and strengths, it could also increase the formation of the calcium phase, which could result in improper release behavior of scaffolds. On the other hand, higher heat treatment temperatures enhanced the strength of the scaffolds but eliminated the bioactive octacalcium phosphate (OCP) phase....
Fabrication of a novel 3D scaffold for cartilage tissue repair: In-vitro and in-vivo study
, Article Materials Science and Engineering C ; Volume 128 , 2021 ; 09284931 (ISSN) ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Self-repairing is not an advanced ability of articular cartilage. Tissue engineering has provided a novel way for reconstructing cartilage using natural polymers because of their biocompatibility and bio-functionality. The purpose of cartilage tissue engineering is to design a scaffold with proper pore structure and similar biological and mechanical properties to the native tissue. In this study, porous scaffolds prepared from gelatin, chitosan and silk fibroin were blended with varying ratios. Between the blends of chitosan (C), gelatin (G) and silk fibroin (S), the scaffold with the weight per volume ratio of 2:2:3 (w/v) showed the most favorable and higher certain properties than the...
Hybrid silk fibroin–gelatin nanofibrous sheet for drug delivery and regenerative medicine: In-vitro characterization and controlled release of simvastatin/protein
, Article Polymers for Advanced Technologies ; Volume 32, Issue 3 , 2021 , Pages 1333-1344 ; 10427147 (ISSN) ; Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
John Wiley and Sons Ltd
2021
Abstract
Blend drug-loading method in electrospun scaffolds has gained much attention as a cost-effective and simple delivery system in regenerative medicine. However, it has some drawbacks, such as the burst release of encapsulated drugs and denaturing active agents in harsh organic solvents. In this study, a new silk fibroin-gelatin (SF–G) fibrous sheet has been introduced as an engineered scaffold and a straightforward drug delivery system for skin tissue engineering applications. The hybrid sheets have been prepared via co-electrospinning and in-situ crosslinking methods without corrosive solvents and toxic crosslinking agents. To evaluate the proposed scaffold as a controlled release system, the...
Effect of pore geometry and loading direction on deformation mechanism of rapid prototyped scaffolds
, Article Acta Materialia ; Volume 60, Issue 6-7 , 2012 , Pages 2778-2789 ; 13596454 (ISSN) ; Bagheri, R ; Zehtab Yazdi, A ; Sharif University of Technology
2012
Abstract
Rapid prototyping is a promising technique for producing tissue engineering scaffolds due to its capacity to generate predetermined forms and structures featuring distinct pore architectures. The objective of this study is to investigate the influences of different pore geometries and their orientation with respect to the compressive loading direction on mechanical responses of scaffolds. Plastic models of scaffolds with cubic and hexagonal unit cells were fabricated by three-dimensional (3-D) printing. An in situ imaging technique was utilized to study the progressive compressive deformation of the scaffold models. In both cubic and hexagonal geometries, organized buckling patterns relevant...
Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs)
, Article Key Engineering Materials, 6 November 2011 through 9 November 2011 ; Volume 493-494 , November , 2012 , Pages 902-908 ; 10139826 (ISSN) ; 9783037852552 (ISBN) ; Solati Hashjin, M ; Shokrgozar, M. A ; Bonakdar, S ; Ganji, Y ; Mirjordavi, N ; Ghavimi, S. A ; Khashayar, P ; Sharif University of Technology
2012
Abstract
Bone Tissue Engineering (BTE) composed of three main parts: scaffold, cells and signaling factors. Several materials and composites are suggested as a scaffold for BTE. Biocompatibility is one of the most important property of a BTE scaffold. In this work synthesis of a novel nanocomposite including layered double hydroxides (LDH) and gelatin is carried out and its biological properties were studied. The co-precipitation (pH=11) method was used to prepare the LDH powder, using calcium nitrate, Magesium nitrate and aluminum nitrate salts as starting materials. The resulted precipitates were dried. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron...
Chitosan-gelatin sheets as scaffolds for muscle tissue engineering
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
Informa Healthcare
2015
Abstract
Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate...
The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells
, Article Journal of Biomedical Materials Research - Part A ; Volume 104, Issue 7 , 2016 , Pages 1610-1621 ; 15493296 (ISSN) ; Mashayekhan, S ; Vakilian, S ; Ardeshirylajimi, A ; Soleimani, M ; Sharif University of Technology
John Wiley and Sons Inc
Abstract
A combination of topographical cues and controlled release of biochemical factors is a potential platform in controlling stem cells differentiation. In this study the synergistic effect of nanotopography and sustained release of biofunctional transforming growth factor beta 1 (TGF-β1) on differentiation of human Wharton's Jelly-derived mesenchymal stem cell (hWJ-derived UC-MSCs) toward myogenic lineage was investigated. In order to achieve a sustained release of TGF-β1, this factor was encapsulated within chitosan nanoparticles. Afterwards the aligned composite mats were fabricated using poly-E-caprolacton (PCL) containing TGF-β1-loaded chitosan nanoparticles and poly-L-lactic acid (PLLA)....
The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using satellite cells
, Article Bioprocess and Biosystems Engineering ; Volume 39, Issue 7 , 2016 , Pages 1163-1172 ; 16157591 (ISSN) ; Mahmoudifard, M ; Mohamadyar Toupkanlou, F ; Dodel, M ; Hajarizadeh, A ; Adabi, M ; Soleimani, M ; Sharif University of Technology
Springer Verlag
Abstract
Among polymers, polyaniline (PANi) has been introduced as a good candidate for muscle regeneration due to high conductivity and also biocompatibility. Herein, for the first time, we report the use of electrospun nanofibrous membrane of PAN-PANi as efficient scaffold for muscle regeneration. The prepared PAN-PANi electrospun nanofibrous membrane was characterized by scanning electron microscopy (SEM), Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR) and tensile examination. The softer scaffolds of non-composite electrospun nanofibrous PAN govern a higher rate of cell growth in spite of lower differentiation value. On the other hand, PAN-PANi electrospun...
Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium
, Article Mathematical Biosciences ; Volume 294 , 2017 , Pages 160-171 ; 00255564 (ISSN) ; Mashayekhan, S ; Bastani, D ; Sharif University of Technology
Abstract
This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation. Moreover, the effects of the scaffold geometry on cell density were examined by changing the channel numbers and the construct length. A 30% increase in the average cells...
Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering
, Article Materials Science and Engineering C ; Volume 79 , 2017 , Pages 783-792 ; 09284931 (ISSN) ; Madaah Hosseini, H. R ; Samadikuchaksaraei, A ; Sharif University of Technology
Abstract
Natural silk fibroin (SF) polymer has biomedical and mechanical properties as a biomaterial for bone tissue engineering scaffolds. Freeze-dried porous nanocomposite scaffolds were prepared from silk fibroin and titanium dioxide (TiO2) nanoparticles as a bioactive reinforcing agent by a phase separation method. In order to fabricate SF/TiO2 scaffolds, 5, 10, 15 and 20 wt% of the TiO2 were added to the SF. The phase structure, functional groups and morphology of the scaffolds were evaluated using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques, respectively. Porosity of the scaffolds was measured by Archimedes' Principle. In addition,...