Loading...
Search for: simulators
0.013 seconds

    Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe

    , Article Solar Energy ; Volume 206 , 2020 , Pages 455-463 Alizadeh, H ; Alhuyi Nazari, M ; Ghasempour, R ; Shafii, M. B ; Akbarzadeh, A. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Photovoltaic (PV) panels provide a suitable way for the direct conversion of solar energy into electricity. The electrical output and efficiency of PV modules are dependent on working temperature. The present study contributes to investigate the efficiency of utilizing a flat plate closed-loop pulsating heat pipe (CLPHP) to cool down a PV panel in both thermal and economic aspects. Accordingly, a numerical investigation is employed to obtain the surface temperature and electrical gain of the PV panel through four scenarios, including natural cooling without additional equipment, CLPHP-based passive cooling, CLPHP-based active cooling, and a conventional flat plate cooling methods. The... 

    Online jointly estimation of hysteretic structures using the combination of central difference Kalman filter and Robbins–Monro technique

    , Article JVC/Journal of Vibration and Control ; 2020 Amini Tehrani, H ; Bakhshi, A ; Yang, T. T. Y ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Rapid assessment of structural safety and performance right after the occurrence of significant earthquake shaking is crucial for building owners and decision-makers to make informed risk management decisions. Hence, it is vital to develop online and pseudo-online health monitoring methods to quantify the health of the building right after significant earthquake shaking. Many Bayesian inference–based methods have been developed in the past which allow the users to estimate the unknown states and parameters. However, one of the most challenging part of the Bayesian inference–based methods is the determination of the parameter noise covariance matrix. It is especially difficult when the number... 

    A rigorous algebraic-analytical method for pore network extraction from micro-tomography images

    , Article Journal of Hydrology ; Volume 590 , 2020 Barzegar, F ; Masihi, M ; Azadi Tabar, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Static and dynamic properties of porous media are highly dependent on its internal geometry. CT scan images are generally used to characterize porous media geometry. Direct simulation of fluid flow on CT scan images is possible but considerably time-consuming. In this study, a new method was developed for extracting a simplified representation known as “pore network model” by utilizing a rigorous algebraic-analytical method. By using a moving frame in the 3D matrix of the CT scan image and stepwise identifying-removing of image components, running time for a 4003 voxels sample in a typical computer system decreased to less than 350 s. The identification of throats was based on a new... 

    FE 2 investigation of aggregate characteristics effect on fracture properties of concrete

    , Article International Journal of Fracture ; Volume 226, Issue 2 , 2020 , Pages 243-261 Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    The relation between aggregate characteristics and fracture properties of concrete mixtures is investigated numerically. A homogenization-based multiscale approach is introduced based on objective failure zone averaging for heterogeneous meso-structure, and traction–separation law of fracture process zone (FPZ) instead of phenomenological constitutive model for macro-structure. A rate-dependent anisotropic damage-plastic formulation is employed to reproduce degradation process in the fine-scale from diffuse damage to localized bands, and extended finite element method (X-FEM) is utilized to resemble the localized region as a macro-crack within the coarse-scale. Different aggregate types are... 

    Numerical study on NOx reduction in a large-scale heavy fuel oil-fired boiler using suitable burner adjustments

    , Article Energy ; Volume 199 , 2020 Darbandi, M ; Fatin, A ; Bordbar, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A numerical framework was carefully developed to simulate the combustion of heavy-fuel-oil (HFO) in a large-scale boiler. The present numerical solutions were compared with the measured data of a laboratory benchmark test and on-site operational data of the chosen HFO-fired boiler. Next, the developed framework was used to perform sensitivity analyses aiming to reduce the NO emission from the HFO-fired boiler without any adverse effect on its combustion performance. Practically, this study focused on re-adjustments of 24 working burners, which could control combustion in the HFO-fired boiler. The early outcome showed that the boiler NO emission and its combustion performance could be... 

    Enhancing the roll dynamics of an AUV by contra-rotating-propellers

    , Article Ships and Offshore Structures ; 2020 Ebrahimi, M ; Kamali, A ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Roll control of the Autonomous Underwater Vehicles (AUVs) is a significant issue in the current field of research for many researchers in the subject of AUV control system designation. Especially at higher speeds, the roll angle generated by a single rotating propeller or other external disturbances can considerably influence the whole dynamics and therefore the operation of the vehicle. In this paper, the utilisation of a system of contra-rotating-propellers (CRP) to enhance the roll dynamics of an AUV is evaluated by developing a six-degrees-of-freedom (6DOF) dynamics and control systems’ simulator. The results show that: 1. The single propeller system can cause roll angle deflections... 

    Contribution of Iraqi and Syrian dust storms on particulate matter concentration during a dust storm episode in receptor cities: Case study of Tehran

    , Article Atmospheric Environment ; Volume 222 , 2020 Jalali Farahani, V ; Arhami, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Frequent dust storms originated from Middle Eastern deserts impact major cities in Iran, including Tehran. Previous studies identified Iraqi and Syrian deserts as the main cross-border contributors to Tehran Particulate Matter (PM) levels. In this study, the contribution of Iraqi and Syrian dust storms to Tehran's PM10 and PM2.5 concentration were assessed during a dust storm episode. Initially, a dust storm event was identified through the statistical analysis of the recorded air pollution data at Tehran's monitoring stations and the visual inspection of the satellite images. A combination of CMAQ/WRF/SMOKE modeling systems was used to simulate PM concentrations from Tehran local sources... 

    Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions

    , Article Communications in Statistics: Simulation and Computation ; Volume 49, Issue 7 , 2020 , Pages 1815-1838 Farokhnia, M ; Akhavan Niaki, S. T ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The growing demand for statistical process monitoring has led to the vast utilization of multivariate control charts. Complicated structure of the measured variables associated with highly correlated characteristics, has given rise to daily increasing urge for reliable substitutes of conventional methods. In this regard, projection methods have been developed to address the issue of high correlation among characteristics by transforming them to an uncorrelated set of variables. Principal component analysis (PCA)-based control charts are widely used to overcome the issue of correlation among measured variables by defining linear transformations of the existing variables to a new uncorrelated... 

    Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity

    , Article Simulation Modelling Practice and Theory ; Volume 105 , 2020 Farrahi, G. H ; Ahmadi, A ; Reza Kasyzadeh, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Durability of the vehicle components needs special attention in the design step due to this fact that the loads on a vehicle are dynamic by their nature. Also, fatigue resistance of the vehicle body is quite important as it is the main load-bearing component among others. The main purpose of the present research is to simulate the spot weld failures of the vehicle body structure due to fatigue damage induced on the body during standardized maneuvers. This was accomplished by using a combination of multi-body dynamics and finite element analyses. To enhance the precision of the analysis, a thickness-dependent nugget diameter was utilized to model the spot welds. To validate the finite element... 

    Topological and chemical short-range order and their correlation with glass form ability of Mg-Zn metallic glasses: A molecular dynamics study

    , Article Computational Materials Science ; Volume 180 , 2020 Foroughi, A ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Mg-based metallic glasses are promising materials for biodegradable implants. Understanding atomistic mechanism behind glass formation in these glasses plays a critical role in developing them for future applications. In the present work, we perform a set of molecular dynamics simulations to study structural origin behind glass form ability of Mg-based Mg-Zn metallic glasses at a wide range of compositions. Pair distribution function, Voronoi tessellation and dynamical analysis were adopted to characterize local structures in these glasses. Structural analysis was performed considering both topological and chemical short-range orders. It was found that structure of Mg-Zn metallic glasses... 

    Modeling and simulation of flow and uranium isotopes separation in gas centrifuges using implicit coupled density-based solver in OpenFOAM

    , Article European Journal of Computational Mechanics ; Volume 29, Issue 1 , 2020 , Pages 1-26 Ghazanfari, V ; Salehi, A. A ; Keshtkar, A. R ; Shadman, M. M ; Askari, M. H ; Sharif University of Technology
    River Publishers  2020
    Abstract
    The performance of a gas centrifuge that is used for isotopes separation is dependent on the gas flow inside it. In this study, for modeling the UF6 gas flow, an Implicit Coupled Density-Based (ICDB) solver, was developed in OpenFOAM. To validate the ICDB solver, the gas flow within the rotor in total reflux state was compared with the analytical solution obtained by Onsager model and the numerical solution obtained by the Fluent software. The results showed that the ICDB solver had acceptable accuracy and validity. Also the computational efficiency of Roe, AUSM (Advection Upstream Splitting Method) and AUSM+ up schemes were compared. The results showed AUSM+ up scheme is efficient. Then,... 

    On the modeling of human intervertebral disc annulus fibrosus: Elastic, permanent deformation and failure responses

    , Article Journal of Biomechanics ; Volume 102 , 2020 Ghezelbash, F ; Shirazi Adl, A ; Baghani, M ; Eskandari, A. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    As a primary load-resisting component, annulus fibrosus (AF) maintains structural integrity of the entire intervertebral disc. Experiments have demonstrated that permanent deformation and damage take place in the tissue under mechanical loads. Development of an accurate model to capture the complex behaviour of AF tissue is hence crucial in disc model studies. We, therefore, aimed to develop a non-homogenous model to capture elastic, inelastic and failure responses of the AF tissue and the entire disc model under axial load. Our model estimations satisfactorily agreed with results of existing uniaxial (along fiber, circumferential and axial directions) and biaxial tissue-level tests. The... 

    Freshwater and cooling production via integration of an ethane ejector expander transcritical refrigeration cycle and a humidification-dehumidification unit

    , Article Desalination ; Volume 477 , 2020 Gholizadeh, T ; Vajdi, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Despite the fact that humidification-dehumidification (HDH) desalination systems can be driven by various renewable or waste heat energies, many of the available renewable technologies are expensive in some parts of the globe. Hence, proposing and developing high-efficient mechanical-based HDH units can be an encouraging alternative which is more highlighted in recent investigations. In pursuance of this objective, three innovative mechanical-driven HDH units are simulated and the results are compared with each other. The simulated hybrid desalination system consists of a HDH unit and an ethane ejector expander transcritical refrigeration cycle (ethane-EETRC). The simulated hybrid systems... 

    CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: Focusing on droplet behavior

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 2 , 2020 , Pages 348-361 Haddadi, M. M ; Hosseini, S. H ; Rashtchian, D ; Ahmadi, G ; Sharif University of Technology
    Chemical Industry Press  2020
    Abstract
    The present study is concerned with the computational fluid dynamics (CFD) simulation of turbulent dispersion of immiscible liquids, namely, water–silicone oil and water–benzene through Kenics static mixers using the Eulerian–Eulerian and Eulerian–Lagrangian approaches of the ANSYS Fluent 16.0 software. To study the droplet size distribution (DSD), the Eulerian formulation incorporating a population balance model (PBM) was employed. For the Eulerian–Lagrangian approach, a discrete phase model (DPM) in conjunction with the Eulerian approach for continuous phase simulation was used to predict the residence time distribution (RTD) of droplets. In both approaches, a shear stress transport (SST)... 

    Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies

    , Article Physical Review E ; Volume 101, Issue 2 , 2020 Hejranfar, K ; Hashemi Nasab, H ; Azampour, M. H ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    The objective of this study is to develop and apply an arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method (ALE-FVLBM) for solving two-dimensional compressible inviscid flows around moving bodies. The two-dimensional compressible form of the LB equation is considered and the resulting LB equation is formulated in the ALE framework on an unstructured body-fitted mesh to correctly model the body shape and properly incorporate the mesh movement due to the body motion. The spatial discretization of the resulting system of equations is performed by a second-order cell-centered finite-volume method on arbitrary quadrilateral meshes and an implicit dual-time stepping... 

    Numerical simulation of proppant transport and tip screen-out in hydraulic fracturing with the extended finite element method

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 128 , 2020 Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the proppant transport and tip screen-out in hydraulic fracturing. The governing equations are based on the momentum balance and mass conservation of the fluid. The hydro-mechanical coupling between the fracture and surrounding porous medium is fulfilled through the weak form of the governing equations. The fluid inflow within the fracture is modeled using the one-dimensional mass conservation of the injected slurry and proppant along the fracture, in which the viscosity of the slurry is dependent on the proppant concentration. The transition from the Poiseuille to Darcy flow regime is incorporated into... 

    Numerical modeling of density-driven solute transport in fractured porous media with the extended finite element method

    , Article Advances in Water Resources ; Volume 136 , 2020 Hosseini, N ; Bajalan, Z ; Khoei, A. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a numerical model is developed based on the X-FEM technique to simulate the transport of dense solute in a single fluid phase through the fractured porous media. The governing equation is based on the mass conservation law which is applied to the fluid phase and the solute in both matrix and fracture domain. The integral governing equations of the mass exchange between the fracture and the surrounding matrix is derived. The extended finite element method (X-FEM) is applied by employing appropriate enrichment functions to model the fractured porous domain. The superiority of the X-FEM is that the FE mesh is not necessary to be conformed to the fracture geometry, so the regular... 

    Rigid-bar loading on pregnant uterus and development of pregnant abdominal response corridor based on finite element biomechanical model

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 1 , January , 2020 Irannejad Parizi, M ; Ahmadian, M. T ; Mohammadi, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    During pregnancy, traumas can threaten maternal and fetal health. Various trauma effects on a pregnant uterus are little investigated. In the present study, a finite element model of a uterus along with a fetus, placenta, amniotic fluid, and two most effective ligament sets is developed. This model allows numerical evaluation of various loading on a pregnant uterus. The model geometry is developed based on CT-scan data and validated using anthropometric data. Applying Ogden hyper-elastic theory, material properties of uterine wall and placenta are developed. After simulating the “rigid-bar” abdominal loading, the impact force and abdominal penetration are investigated. Findings are compared... 

    A comprehensive comparative investigation on solar heating and cooling technologies from a thermo-economic viewpoint—A dynamic simulation

    , Article Energy Science and Engineering ; December , 2020 Jafari Mosleh, H ; Behnam, P ; Abbasi Kamazani, M ; Mohammadi, O ; Kavian, S ; Ahmadi, P ; Rosen, M. A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The yearly thermo-economic performance is dynamically investigated for three solar heating and cooling systems: solar heating and absorption cooling (SHAC), solar heating and ejector cooling (SHEC), and heating and solar vapor compression cooling (HSVC). First, the effects of important design parameters on the thermo-economic performance of the systems to supply the heating and cooling loads of the building are evaluated. The systems are parametrically analyzed with the weather conditions of Tehran, Iran. The results show that the life cycle costs (LCC) of the SHAC and HSVC systems are alike and much lower than those of the SHEC system. The HSVC system exhibits the best performance from... 

    An N-Path filter design methodology with harmonic rejection, power reduction, foldback elimination, and spectrum shaping

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 67, Issue 12 , 2020 , Pages 4494-4506 Karami, P ; Banaeikashani, A ; Behmanesh, B ; Atarodi, S. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, an adaptive design methodology for synthesizing a harmonic free N-path filter with reduced frequency folding is presented. System level analysis of proposed architecture shows that by adding a few extra paths with proper weights to a conventional N-path filter, several characteristics such as harmonic rejection, power reduction, foldback elimination and spectrum shaping can be achieved. The designed filter is reconfigurable to be a band-pass filter (BPF) or a band-reject filter (notch), based on the requirements. By using the nth harmonic of Local Oscillator (LO) signal, instead of the fundamental harmonic, the required input clock frequency in N-phase clock generator is...