Loading...
Search for: single-walled-carbon
0.009 seconds
Total 48 records

    Thermal buckling analysis of bridged single walled carbon nanotubes using molecular structural mechanics

    , Article Journal of Applied Physics ; Volume 117, Issue 11 , 2015 ; 00218979 (ISSN) Firouz Abadi, R. D ; Badri Kouhi, E ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    This paper is concerned with the stability analysis of bridged single walled carbon nanotubes (SWCNT) under temperature changes. A molecular structural mechanics model is utilized to investigate the free vibration frequencies and thermal buckling of SWCNT. In comparison with most of the previous studies, a temperature-variable thermal-expansion-coefficient is used that is negative under a certain temperature. Also thermal variation of Young's modulus of the CNTs is considered. Several studies are performed to investigate the critical temperature change due to heating and cooling of SWCNTs with different chiralities and slenderness ratios and the stability boundaries are determined  

    Computational modeling of the transverse-isotropic elastic properties of single-walled carbon nanotubes

    , Article Computational Materials Science ; Volume 49, Issue 3 , 2010 , Pages 544-551 ; 09270256 (ISSN) Montazeri, A ; Sadeghi, M ; Naghdabadi, R ; Rafii-Tabar, H ; Sharif University of Technology
    2010
    Abstract
    Various experimental and theoretical investigations have been carried out to determine the elastic properties of nanotubes in the axial direction. Their behavior in transverse directions, however, has not been well studied. In this paper, a combination of molecular dynamics (MD) and continuum-based elasticity model is used to predict the transverse-isotropic elastic properties of single-walled carbon nanotubes (SWCNTs). From this modeling study, five independent elastic constants of an SWCNT in transverse directions are obtained by analyzing its deformations under four different loading conditions, namely, axial tension, torsion, uniform and non-uniform radial pressure. To find the elastic... 

    Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 42, Issue 9 , 2010 , Pages 2391-2401 ; 13869477 (ISSN) Kiani, K ; Sharif University of Technology
    2010
    Abstract
    Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of applications, however, little is known about their dynamical interactions with moving nanoscale particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the SWCNT are incorporated in the formulation of the problem. The equivalent continuum structure associated with the SWCNT is considered and modeled using nonlocal Rayleigh beam theory under simply supported... 

    DFT study of NH3(H2O) n=0,1,2,3 complex adsorption on the (8, 0) single-walled carbon nanotube

    , Article Computational Materials Science ; Volume 48, Issue 3 , 2010 , Pages 655-657 ; 09270256 (ISSN) Shirvani, B. B ; Beheshtian, J ; Parsafar, G ; Hadipour, N. L ; Sharif University of Technology
    Abstract
    Theoretical study of NH3(H2O) n=0,1,2,3 adsorption on (8, 0) carbon nanotube was performed at the X3LYP/6-31G* level of density functional theory (DFT). The tube-NH3 interaction was discussed in the terms of binding energy (EB), coupling energy (EC), charge density, molecular orbitals, and dipole moments. The results reveal that addition of water molecules to tube-NH3 system increases the interaction between tube and ammonia molecule  

    Dynamic stability analysis of single walled carbon nanocone conveying fluid

    , Article Computational Materials Science ; Volume 113 , 2016 , Pages 123-132 ; 09270256 (ISSN) Rasouli Gandomani, M ; Noorian, M. A ; Haddadpour, H ; Fotouhi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This report aims the study of dynamic stability of single walled carbon nanocone for some axial length conditions and declination angles of 60°, 120°and 240°. For dynamic stability analysis of Single Walled Carbon Nanocone (SWCNC), the mode shapes and frequencies of the carbon nanocone are extracted using the molecular mechanics approach. The mechanical properties of SWCNC were obtained by the Molecular Mechanics (MM) method. The obtained parameters are used for extraction of the conical shell virtual model of nanocone with the same dimensions. The equations of coupled fluid-structural dynamics of SWCNC are derived using the modal expansion for the structural displacements of the conical... 

    Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    , Article Applied Physics A: Materials Science and Processing ; Volume 122, Issue 8 , Volume 122, Issue 8 , 2016 ; 09478396 (ISSN) Ali Akbari, H. R ; Shaat, M ; Abdelkefi, A ; Sharif University of Technology
    Springer Verlag 
    Abstract
    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler–Bernoulli beam with von Kármán type geometric nonlinearity. Eringen’s nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue... 

    A numerical study on the influence of interface recombination on performance of carbon nanotube/GaAs solar cells

    , Article Optical and Quantum Electronics ; Volume 48, Issue 8 , 2016 ; 03068919 (ISSN) Movla, H ; Ghaffari, S ; Rezaei, E ; Sharif University of Technology
    Springer New York LLC 
    Abstract
    Carbon nanotubes (CNT) have unique electronic properties and remarkable optical properties. Despite of on layer thickness of CNTs, it has able to absorb photons from visible to far infrared and terahertz. These unique properties lets to create heterojunction devices by semiconductor/CNTs or metal/CNTs junctions e.g. photodiodes, sensor and heterojunction solar cell. The CNTs can play the role of a heterojunction component for charge separation as a high conductive network for charge transport and as a transparent electrode for light illumination and charge collection. The main objective of the present article is to establish a relation between interface recombination and the characteristics... 

    Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 303 , 2016 , Pages 75-100 ; 00457825 (ISSN) Mehri, M ; Asadi, H ; Wang, Q ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present research deals with bifurcation and vibration responses of a composite truncated conical shell with embedded single-walled carbon nanotubes (SWCNTs) subjected to an external pressure and axial compression simultaneously. The distribution of reinforcements through the thickness of the shell is assumed to be either uniform or functionally graded. The equations of motion are established using Green-Lagrange type nonlinear kinematics within the framework of Novozhilov nonlinear shell theory. Linear membrane prebuckling analysis is conducted to extract the prebuckling deformations. The stability equations are derived by applying the adjacent equilibrium criterion to the prebuckling... 

    Free vibrations analysis of carbon nanotubes resting on winkler foundations based on nonlocal models

    , Article Physica B: Condensed Matter ; Volume 484 , 2016 , Pages 83-94 ; 09214526 (ISSN) Rahmanian, M ; Torkaman Asadi, M. A ; Firouz Abadi, R. D ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier 
    Abstract
    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn  

    The effects of geometrical parameters on force distributions and mechanics of carbon nanotubes: A critical study

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 12 , 2009 , Pages 4246-4263 ; 10075704 (ISSN) Ansari, R ; Motevalli, B ; Sharif University of Technology
    Abstract
    In this paper, using the continuum approximation together with Lennard-Jones potential, a new semi-analytical expression is given to evaluate the van der Waals interaction between two single-walled carbon nanotubes. Based on this expression, two new formulations are also proposed to model multi-walled carbon nanotubes. In the first one, the interactions between each pair of shells from the inner and outer tubes are summed up over all of the pairs, whereas in the second formulation, a set of correction factors are applied to convert the results of double-walled carbon nanotubes to the correlated multi-walled ones. With respect to the present formulations, extensive studies on the variations... 

    Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 9, Issue 6 , 2017 ; 17588251 (ISSN) Hosseini, M ; Haghshenas Gorgani, H ; Shishesaz, M ; Hadi, A ; Sharif University of Technology
    Abstract
    This paper studies stress distribution in a single-walled carbon nanotube (SWCNT) under internal pressure with various chirality. Strain gradient theory is used to capture the size-dependent behavior of the SWCNT. Minimum total potential energy principle is successfully applied to derive the governing differential equation and its associated boundary conditions. Due to complexity of the governing differential equation and boundary conditions, numerical scheme is used to solve the problem. Comparing the results based on strain gradient theory and that of classical elasticity shows a major difference between these two methods. However, a close examination of the results indicates that both... 

    Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives

    , Article Microfluidics and Nanofluidics ; Volume 21, Issue 9 , 2017 ; 16134982 (ISSN) Ghasemi, A ; Amiri, H ; Zare, H ; Masroor, M ; Hasanzadeh, A ; Beyzavi, A ; Aref, A. R ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Advanced nanomaterials such as carbon nanotubes (CNTs) display unprecedented properties such as strength, electrical conductance, thermal stability, and intriguing optical properties. These properties of CNT allow construction of small microfluidic devices leading to miniaturization of analyses previously conducted on a laboratory bench. With dimensions of only millimeters to a few square centimeters, these devices are called lab-on-a-chip (LOC). A LOC device requires a multidisciplinary contribution from different fields and offers automation, portability, and high-throughput screening along with a significant reduction in reagent consumption. Today, CNT can play a vital role in many parts... 

    Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

    , Article Structural Engineering and Mechanics ; Volume 66, Issue 5 , 10 June , 2018 , Pages 621-629 ; 12254568 (ISSN) Hosseini Kordkheili, S. A ; Mousavi, T ; Bahai, H ; Sharif University of Technology
    Techno Press  2018
    Abstract
    By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos. Copyright © 2018 Techno-Press,... 

    Stability of single-walled carbon nanopeapods under combined axial compressive load and external pressure

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 41, Issue 3 , 2009 , Pages 513-517 ; 13869477 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    Elsevier  2009
    Abstract
    In this paper, the axial stability of single-walled carbon nanopeapods is studied based on an elastic continuum shell model. In order to model the non-bonded van der Waals interactions between host carbon nanotube and guest fullerenes, an equivalent pressure distribution is proposed and incorporated in the model. Deriving an explicit equation for the determination of critical axial load, it is concluded that the axial stability of a single-walled carbon nanopeapod is less than that of a carbon nanotube under otherwise identical conditions. In addition, it is shown that applying external pressure to the carbon nanopeapod decreases the axial compressive stability through reducing the critical... 

    The effective mechanical properties and the interfacial characterization of CNT reinforced nanocomposites

    , Article Proceedings of SPIE - The International Society for Optical Engineering, 9 March 2009 through 11 March 2009, San Diego, CA ; Volume 7294 , 2009 ; 0277786X (ISSN); 9780819475541 (ISBN) Sadeghia, H ; Naghdabadi, R ; The International Society for Optical Engineering (SPIE) ; Sharif University of Technology
    2009
    Abstract
    A small volume fraction of Carbon Nanotubes (CNTs) added in a polymeric matrix increases significantly the mechanical properties of the polymers. It is experimentally determined from the TEM images of CNT-based nanocomposites that nanotubes don't stand straight in their embedded matrix and they have some curvature in their shape. The load transfer mechanism between CNT and polymer matrix is also one of the most important issues which is not understood explicitly, yet. In this paper a wavy Single Walled Carbon Nanotube (SWCNT) is modeled as inclusion in a polymer matrix and its effective mechanical properties is studied. This model is based on using 3-D Representive Volume Element (RVE) with... 

    CVD synthesis of small-diameter single-walled carbon nanotubes on silicon

    , Article Scientia Iranica ; Volume 16, Issue 1 D , 2009 , Pages 61-64 ; 10263098 (ISSN) Arjmandi, N ; Sasanpour, P ; Rashidian, B ; Sharif University of Technology
    2009
    Abstract
    A simple process for the chemical vapor deposition of ultra SD single-wall carbon nanotubes has been developed. In this process, an iron nitrate nonahydrate solution in isopropyl alcohol with a concentration of (400 μgr/milt) was used to catalyst nanoparticle formation on an oxidized silicon wafer. The oxide on the substrate was made of a thick layer of wet oxide sandwiched between two thin layers of dry oxide. The process results in semiconducting Single-Walled carbon Nano Tubes (SWNTs) with diameters of less than 0.7 nm and more than a 1 ev band gap energy, which are amongst the smallest diameters of SWNTs ever reported. © Sharif University of Technology, June 2009  

    Vibrational analysis of single-walled carbon nanotubes using beam element

    , Article Thin-Walled Structures ; Volume 47, Issue 6-7 , 2009 , Pages 646-652 ; 02638231 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2009
    Abstract
    Vibrational analysis of single-walled carbon nanotubes (SWCNTs) is performed using a finite element method (FEM). To this end, the vibrational behavior of bridge and cantilever SWCNTs with different side lengths and diameters is modeled by three-dimensional elastic beams and point masses. The beam element elastic properties are calculated by considering mechanical characteristics of the covalent bonds between the carbon atoms in the hexagonal lattice. The mass of each beam element is assumed as point masses at nodes coinciding with the carbon atoms. Implementing the atomistic simulation approach, the natural frequencies of zigzag and armchair SWCNTs are computed. It is observed that the... 

    Dual ideal shear strengths for chiral single-walled carbon nanotubes

    , Article International Journal of Non-Linear Mechanics ; Volume 120 , 2020 Delfani, M. R ; mohamadi Shodja, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    By considering a single-walled carbon nanotube (SWCNT) as a two-dimensional elastica obtained from the roll-up of a graphene sheet into a circular tube, the present paper develops a precise well-posed continuum theory for describing the entire torsional behavior of SWCNTs from an initial unloaded state through their ultimate levels of loading. In addition, the proposed approach can capture the dual ideal shear strengths as well as the asymmetrical behavior of chiral tubes with respect to the direction of the applied torsional loading. The theory incorporates a highly nonlinear constitutive equation which provides information about the nanoscopic morphological parameters of the tubes. As it... 

    Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel-cobalt nanostructures

    , Article Sustainable Energy and Fuels ; Volume 4, Issue 2 , 2020 , Pages 643-654 Hekmat, F ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    We hereby demonstrate symmetric and asymmetric supercapacitors (SSCs and ASCs) based on core/shell-like Ni-Co oxide@cotton//Fe2O3-carbon nanotubes@cotton that are capable of storing a remarkable amount of energy, while retaining a high power density and long cycle life. Hierarchical, porous structures of Ni-Co-O nano-rod (NR) decorated Pd-activated cotton fibers (CFs) were fabricated using an eco-benign hydrothermal method and directly used as the cathode of the supercapacitors. Fe2O3-single-wall carbon nanotube (SWCNT) decorated CFs were employed as anodes of the fabricated ASCs. The assembled Ni-Co-O@cotton//Fe2O3-SWCNTs@cotton based ASCs possessed the benefits of a relatively high energy... 

    Site-specific protein conjugation onto fluorescent single-walled carbon nanotubes

    , Article Chemistry of Materials ; Volume 32, Issue 20 , 2020 , Pages 8798-8807 Zubkovs, V ; Wu, S. J ; Rahnamaee, S. Y ; Schuergers, N ; Boghossian, A. A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Semiconducting single-walled carbon nanotubes (SWCNTs) are among the few photostable optical emitters that are ideal for sensing, imaging, drug delivery, and monitoring of protein activity. These applications often require strategies for immobilizing proteins onto the nanotube while preserving the optical properties of the SWCNTs. Site-specific and oriented immobilization strategies, in particular, offer advantages for improving sensor and optical signaling responses. In this study, we demonstrate site-specific protein immobilization of a model of enhanced yellow fluorescent protein with a single engineered cysteine residue, using either single-stranded DNA or a pyrene-containing linker to...