Loading...
Search for: solar-power
0.006 seconds
Total 170 records

    Carbon nanoparticles in high-performance perovskite solar cells

    , Article Advanced Energy Materials ; Volume 8, Issue 12 , 2018 ; 16146832 (ISSN) Yavari, M ; Mazloum Ardakani, M ; Gholipour, S ; Marinova, N ; Delgado, J. L ; Turren Cruz, S. H ; Domanski, K ; Taghavinia, N ; Saliba, M ; Gratzel, M ; Hagfeldt, A ; Tress, W ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    In the past few years, organic–inorganic metal halide ABX3 perovskites (A = Rb, Cs, methylammonium, formamidinium (FA); B = Pb, Sn; X = Cl, Br, I) have rapidly emerged as promising materials for photovoltaic applications. Tuning the film morphology by various deposition techniques and additives is crucial to achieve solar cells with high performance and long-term stability. In this work, carbon nanoparticles (CNPs) containing functional groups are added to the perovskite precursor solution for fabrication of fluorine-doped tin oxide/TiO2/perovskite/spiro-OMeTAD/gold devices. With the addition of CNPs, the perovskite films are thermally more stable, contain larger grains, and become more... 

    Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics

    , Article Nano Letters ; Volume 18, Issue 4 , 2018 , Pages 2428-2434 ; 15306984 (ISSN) Tavakoli, M. M ; Giordano, F ; Zakeeruddin, S. M ; Gratzel, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or... 

    An experimental study of a solar hybrid system to produce freshwater from waste heat of photovoltaic module by using thermosyphon heat pipes

    , Article Energy Conversion and Management ; Volume 158 , 2018 , Pages 9-22 ; 01968904 (ISSN) Hooshmand, P ; Shafii, M. B ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    An experimental study was conducted on a solar hybrid system to transform the waste heat of photovoltaic module (PV module) into a useful heat which could be used in a solar desalination (SD) system in order to produce freshwater (scenario 1). Then, different parameters such as the amount of the produced freshwater by condensed vapor on the glass cover and basin side walls were taken into consideration after the fabrication of the SD system. Furthermore, the effect of water depth in the tray and the effect of the presence of a fan inside the basin (scenario 3) on water yield (kg/m2hr) were evaluated. In addition, the effects of using a mirror to lead the reflected light on the PV module and... 

    Experimental analysis of a cooling system effect on photovoltaic panels’ efficiency and its preheating water production

    , Article Renewable Energy ; 2018 ; 09601481 (ISSN) Fakouriyan, S ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper addresses a low complexity and high efficient cooling system applicable on photovoltaic (PV) system leading to enhance electrical efficiency and provide preheated water. The developed system consists of a photovoltaic panel, a cooling water system establishing a uniform surface temperature, and a solar water heater. According to the proposed system characteristics, the setup is constructed based on a single mono-crystalline solar panel to absorb more solar radiation intensity and generate more electrical energy per area in compare to a poly-crystalline panel. The preheated water produced by absorbed heat from the photovoltaic is conducted to a solar water heater to satisfy... 

    Optimal policy of energy innovation in developing countries: Development of solar PV in Iran

    , Article Energy Policy ; Volume 37, Issue 3 , 2009 , Pages 1116-1127 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M.B ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study is to apply managerial economics and methods of decision analysis to study the optimal pattern of innovation activities for development of new energy technologies in developing countries. For this purpose, a model of energy research and development (R&D) planning is developed and it is then linked to a bottom-up energy-systems model. The set of interlinked models provide a comprehensive analytical tool for assessment of energy technologies and innovation planning taking into account the specific conditions of developing countries. An energy-system model is used as a tool for the assessment and prioritization of new energy technologies. Based on the results of the... 

    Comparison of performance prediction of solar water heaters between artificial neural networks and conventional correlations

    , Article International Journal of Global Energy Issues ; Volume 31, Issue 2 , 2009 , Pages 122-131 ; 09547118 (ISSN) Razavi, J ; Riazi, M. R ; Raoufi, F ; Sadeghi, A ; Sharif University of Technology
    2009
    Abstract
    The aim of this study was to develop a predictive method for heat transfer coefficients in solar water heaters and their performance evaluation of such heaters with different materials used as heat collectors. Two approaches have been used: conventional method and an Artificial Neural Network (ANN) to predict the performance of solar water heaters and to compare these two approaches. This performance is measured in terms of outlet temperature by using a set of conventional feed forward multi-layer neural networks. The actual experimental data which were used as our network's input gathered from published literature (for polypropylene tubes) and from the experiments carried out recently using... 

    Impact of innovation programs on development of energy system: case of Iranian electricity-supply system

    , Article Energy Policy ; Volume 37, Issue 6 , 2009 , Pages 2221-2230 ; 03014215 (ISSN) Shafiei, E ; Saboohi, Y ; Ghofrani, M. B ; Sharif University of Technology
    2009
    Abstract
    The paper presents further experiments with an extended version of a comprehensive model for assessment of energy technologies and research and development (R&D) planning to evaluate the impact of innovation programs on development of Iranian electricity-supply system. This analytical instrument is a model of energy R&D resource allocation with an explicit perspective of developing countries which has been linked to a bottom-up energy-systems model. Three emerging electricity generation technologies of solar PV, wind turbine and gas fuel cell are considered in the model and the impact of innovation programs on cost-reducing innovation for them is examined. The main results provided by the... 

    The effect of lithium doping in solution-processed nickel oxide films for perovskite solar cells

    , Article ChemPhysChem ; Volume 20, Issue 24 , 2019 , Pages 3322-3327 ; 14394235 (ISSN) Saki, Z ; Sveinbjornsson, K ; Boschloo, G ; Taghavinia, N ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    The effect of substitutional Li doping into NiOx hole transporting layer (HTL) for use in inverted perovskite solar cells was systematically studied. Li doped NiOx thin films with preferential crystal growth along the (111) plane were deposited using a simple solution-based process. Mott-Schottky analysis showed that hole carrier concentration (NA) is doubled by Li doping. Utilizing 4 % Li in NiOx improved the power conversion efficiency (PCE) of solar devices from 9.0 % to 12.6 %. Photoluminescence quenching investigations demonstrate better hole capturing properties of Li:NiOx compared to that of NiOx, leading to higher current densities by Li doping. The electrical conductivity of NiOx is... 

    Hole transport material based on modified N-annulated perylene for efficient and stable perovskite solar cells

    , Article Solar Energy ; Volume 194 , 2019 , Pages 279-285 ; 0038092X (ISSN) Sheibani, E ; Amini, M ; Heydari, M ; Ahangar, H ; Keshavarzi, R ; Zhang, J ; Mirkhani, V ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    N-annulated perylene based materials show outstanding and tunable optical and physical properties, making them suitable to be charge transport materials for optoelectronic applications. However, this type of materials has so far not been well studied in solar cells. Here, we develop a new hole transport material (HTM), namely S5, based on perylene building block terms, for organic-inorganic hybrid perovskite solar cells (PSCs). We have systematically studied the influences of the film thickness of S5 on their photovoltaic performance, and a low concentration of S5 with a thinner HTM film is favorable for obtaining higher solar cell efficiency. S5 shows excellent energy alignment with... 

    Effect of ZnO nanoparticles coating layers on top of ZnO nanowires for morphological, optical, and photovoltaic properties of dye-sensitized solar cells

    , Article Micromachines ; Volume 10, Issue 12 , 2019 ; 2072666X (ISSN) Saleem, M ; Farooq, W. A ; Iftikhar Khan, M ; Niaz Akhtar, M ; Rehman, S. U ; Ahmad, N ; Khalid, M ; Atif, M ; AlMutairi, M. A ; Irfan, M ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    This paper reports on the synthesis of ZnO nanowires (NWs), as well asthe compound nanostructures of nanoparticles (NPs) and nanowires (NWs+NPs) with different coating layers of NPs on the top of NWs and their integration in dye-sensitized solar cells (DSSCs). In compound nanostructures, NWs offer direct electrical pathways for fast electron transfer, and the NPs of ZnOdispread and fill the interstices between the NWs of ZnO, offering a huge surface area for enough dye anchoring and promoting light harvesting. A significant photocurrent density of 2.64mA/cm2 and energy conversion efficiency of 1.43% was obtained with NWs-based DSSCs. The total solar-to-electric energy conversion efficiency... 

    Linear parabolic trough solar power plant assisted with latent thermal energy storage system: A dynamic simulation

    , Article Applied Thermal Engineering ; Volume 161 , 2019 ; 13594311 (ISSN) Jafari Mosleh, H ; Ahmadi, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the efficient solar energy harvesting technics is the parabolic trough concentrated solar power plant. However, if the concentrated solar power plant were not equipped with a storage system, the power plant capacity factor would be deficient. Latent thermal energy storage system using phase change material (PCM) is a high energy density storage system to provide durable energy with a constant temperature. In this study, first, a dynamic analysis is performed implementing TRNSYS software on the parabolic trough concentrated solar power plant located in Shiraz, Iran. Consequently, this system is assisted by the latent thermal energy storage system to improve its performance and capacity... 

    Impact of solar energy on the integrated operation of electricity-gas grids

    , Article Energy ; Volume 183 , 2019 , Pages 844-853 ; 03605442 (ISSN) Badakhshan, S ; Hajibandeh, N ; Shafie khah, M ; Catalão, J. P. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Photovoltaic energy is one of the clean and efficient energies which has been developing quickly in the last years. As the penetration of solar plants is increasing in the electricity network, new problems have arisen in network operation. This paper models a high penetration factor of solar energy in the electricity network and investigates the impact of solar energy growth on both the generation schedule of different power plants and in the natural gas transmission network. Fuel management of gas power plants is modeled through simulation of the natural gas transmission network. To this end, an increase in the penetration of solar energy in the electricity network inevitably leads to a... 

    Solar energy systems – Potential of nanofluids

    , Article Journal of Molecular Liquids ; Volume 289 , 2019 ; 01677322 (ISSN) Wahab, A ; Hassan, A ; Qasim, M. A ; Ali, H. M ; Babar, H ; Sajid, M. U ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Global warming escalation has extended average temperature of earth beyond its safe limit. To avert this environmental-threat, solar energy has acquired substantial attention of remarkable researchers in this century. To effectively utilize solar energy by transforming into thermal and electrical energy, the involvement of nanofluids having intensified thermal, optical and magnetic properties, has become very popular. The foremost objective of this article is to provide a comprehensive review on the applications of nanofluids in solar energy systems like solar collectors, photovoltaic cells, solar stills, and thermal energy storage, which are thoroughly discussed in this paper. The effect of... 

    A review of recent advances in solar cooking technology

    , Article Renewable Energy ; Volume 140 , 2019 , Pages 419-435 ; 09601481 (ISSN) Aramesh, M ; Ghalebani, M ; Kasaeian, A ; Zamani, H ; Lorenzini, G ; Mahian, O ; Wongwises, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    One of the primary factors affecting the amount of worldwide energy consumption and greenhouse gas emissions is cooking. Solar cooking is an appropriate solution because it is both inexpensive and expandable. To illustrate modern advancements and the current status of solar cooking technology, this paper presents a review of recent experimental and analytical socioeconomic studies on solar cookers. The experimental studies have been divided into three categories based on different solar cooker structures: (i) box types, (ii) concentrating types, and (iii) panel types. Next, different designs are investigated according to their direct or indirect heat transfer modes and optional equipment for... 

    Hydrogen peroxide-assisted photocatalysis under solar light irradiation: Interpretation of interaction effects between an active photocatalyst and H2O2

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 7 , 2019 , Pages 2009-2014 ; 00084034 (ISSN) Feilizadeh, M ; Attar, F ; Mahinpey, N ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    In this work, the combination of H2O2 and an active visible-light-driven photocatalyst (Ag-S/PEG/TiO2) was utilized under natural solar radiation for the degradation of 2-nitrophenol (2-NP), and interaction effects between the photocatalyst and hydrogen peroxide were analyzed. For this purpose, experiments were designed using the response surface methodology based on the central composite design. The resulting data was utilized to obtain a model for the prediction of response (the degradation efficiency) as a function of two independent factors (H2O2 concentration and the photocatalyst loading). The statistical analysis indicated that optimum values of each of the two independent factors... 

    The effect of strong ambient winds on the efficiency of solar updraft power towers: A numerical case study for Orkney

    , Article Renewable Energy ; Volume 136 , 2019 , Pages 937-944 ; 09601481 (ISSN) Jafarifar, N ; Behzadi, M. M ; Yaghini, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Solar updraft tower (SUT) is a simple power plant in which ventilation of heated air inside a channel drives a turbine. This system is recognised as suitable for areas with abundant solar radiation. As a result, there is no extensive research on the performance of SUTs under mild solar radiation. Studies show that strong ambient crosswinds can affect the performance of a SUT. In this paper, the efficiency of SUTs in areas which benefit from strong winds, despite low solar radiation, is investigated through numerical modelling. Comparison is made between the efficiency of a commercial-scale SUT in Manzanares (Spain) with intensive solar radiation, and one of the same size potentially located... 

    Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes

    , Article Solar Energy ; Volume 184 , 2019 , Pages 115-126 ; 0038092X (ISSN) Peighambardoust, N. S ; Khameneh Asl, S ; Mohammadpour, R ; Khameneh Asl, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Although morphological disorder of nanotube structure is further down than the nanoparticular electrode, its density of traps are the hindering effects in the charge transport. In this study, crack-free TiO2 nanotube membranes, which obtained through a re-anodizing process, are fixed on transparent fluorine–tin-oxide glass by applying a few drops of Titanium Isopropoxide without needing the TiO2 powder paste. Front-side illuminated dye sensitized solar cells fabricated by undoped, N-doped and blue TiO2 nanotube membranes are investigated. The electrical characteristics of TiO2 nanotube based dye sensitized solar cells are followed by theoretical analysis using simple one-diode model.... 

    Long-Term electric vehicle planning in a microgrid

    , Article 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, 21 May 2019 through 24 May 2019 ; 2019 , Pages 3467-3472 ; 9781728135205 (ISBN) Clairand, J. M ; Arriaga, M ; Ravanji, M. H ; Escriva Escriva, G ; IEEE; IEEE Power and Energy Society (PES) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Isolated microgrids depend mainly on diesel generation and have polluting transportation. This is being addressed by the introduction of renewable energy resources and electric vehicles (EVs). Hence, this paper presents a novel long-term planning model for the introduction of EVs in isolated microgrids. This work studies the replacement of internal combustion vehicles with electric ones by analyzing their respective investment, maintenance and operation costs. Various case studies are discussed, considering different EV and solar photovoltaic (PV) penetration levels, and varying prices of diesel in the planning horizon. Results demonstrate that investing in EVs could significantly reduce net... 

    Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production

    , Article Renewable Energy ; 2019 , Pages 1362-1368 ; 09601481 (ISSN) Fakouriyan, S ; Saboohi, Y ; Fathi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper addresses a low complexity and high efficient cooling system applicable on photovoltaic (PV) system leading to enhance electrical efficiency and provide preheated water. The developed system consists of a photovoltaic panel, a cooling water system establishing a uniform surface temperature, and a solar water heater. According to the proposed system characteristics, the setup is constructed based on a single mono-crystalline solar panel to absorb more solar radiation intensity and generate more electrical energy per area in compare to a poly-crystalline panel. The preheated water produced by absorbed heat from the photovoltaic is conducted to a solar water heater to satisfy... 

    Investigating potential benefits of a salinity gradient solar pond for ejector refrigeration cycle coupled with a thermoelectric generator

    , Article Energy ; Volume 172 , 2019 , Pages 675-690 ; 03605442 (ISSN) Rostamzadeh, H ; Nourani, P ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Extraction of thermal heat from a salinity-gradient solar pond (SGSP) as a way of accumulating solar energy, stockpiling and taking merit of it for medium and low temperature demands is presented as an interesting topic in recent decades. This reliable supply of heat can be used for low-temperature refrigeration systems to yield cooling load for residential applications. For this purpose, theoretical investigation of ejector refrigeration cycle (ERC) driven by a SGSP is carried out to produce cooling output. Also, thermoelectric generator (TEG) is used as a potential device replacing condenser of the ERC for the sake of bolstering performance of the fundamental system by producing power,...