Loading...
Search for: solar-power-generation
0.01 seconds
Total 105 records

    A dynamic multi-sector analysis of technological catch-up: The impact of technology cycle times, knowledge base complexity and variety

    , Article Research Policy ; Volume 50, Issue 3 , 2021 ; 00487333 (ISSN) Rosiello, A ; Maleki, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    This article contributes to the ongoing debate about whether, how, and under what conditions latecomer countries can become producers of new technology and innovation, thereby catching up with technological leaders. Recent work on sectoral systems of innovation and in the evolutionary economics literature suggests that successful latecomers can move into new technological or industrial domains. They specialise in domains that present more frequent windows of opportunity, shorter technological cycles, flatter learning curves and easier access to relevant knowledge than others. This study investigates the role and significance of two hitherto neglected dimensions of technological regimes that... 

    4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells

    , Article Optical Materials ; Volume 123 , 2022 ; 09253467 (ISSN) Rafiei Rad, R ; Azizollah Ganji, B ; Taghavinia, N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Perovskite solar cells fabrication process need inert or low humidity atmospheres. While highly efficient perovskite solar cells to overcome the photovoltaic marketing should be achieved stability at any environmental conditions. At high humidity, water molecules react with the perovskite layer and increase the degradation rate, leading to a drastic decrease in device performance and perovskite crystallinity. In this work, the effect of environmental humidity on photophysical parameters of wide bandgap, (WBG) perovskite layer and solar cells stability is systematically investigated and tBP is proposed as an additive in perovskite precursor to increase the moisture resistance and improve the... 

    A two-step spin-spray deposition processing route for production of halide perovskite solar cell

    , Article Thin Solid Films ; Volume 616 , 2016 , Pages 754-759 ; 00406090 (ISSN) Mohammadian, N ; Alizadeh, A. H ; Moshaii, A ; Gharibzadeh, S ; Alizadeh, A ; Mohammadpour, R ; Fathi, D ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    We report on fabrication of halide perovskite solar cells using a two-step spin-spray coating rout. The applied method is one of the most straight forward procedures for fabricating uniform stoichiometry and crystalline perovskite cells. To fabricate a high quality perovskite layer, various concentrations of methyl-ammonium iodide (CH3NH3I) were sprayed on a spin coated PbI2 layer using a simple airbrush gun. The characterization results indicate that the size of cuboid perovskite morphology depends on the concentration of methylammonium iodide in the spray procedure. The photovoltaic performance of the fabricated solar cells has been measured and a high dependency on the cuboid sizes was... 

    Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode

    , Article Materials Letters ; Volume 159 , November , 2015 , Pages 273-275 ; 0167577X (ISSN) Shogh, S ; Mohammadpour, R ; Zad, A. I ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Well-crystallized TiO2 and neodymium (Nd)-doped TiO2 nanoparticles with various doping levels were synthesized by hydrothermal method and utilized as the photoanode of nanostructured solar cells. The results indicated that Nd-doping was caused the absorption spectra shift to higher wavelength while the morphology and surface area were unchanged. As a result, by employing 0.4 mol% Nd in the TiO2 photoelectrode, the overall conversion efficiency of the cell reached 9.08% which is 26% higher than pure one. Based on the photo-electrochemical characterizations, the improvement is a consequence of electrons injection increment from dye to TiO2 conduction... 

    Plasmonic effects of infiltrated silver nanoparticles inside TiO2 film: Enhanced photovoltaic performance in DSSCs

    , Article Journal of the American Ceramic Society ; Volume 99, Issue 1 , 2016 , Pages 167-173 ; 00027820 (ISSN) Andaji Garmaroudi, Z ; Mohammadi, M. R ; Sharif University of Technology
    Blackwell Publishing Inc 
    Abstract
    The plasmonic effects of infiltrated silver (Ag) nanoparticles, with different contents, inside a nanostructured TiO2 film on the photovoltaic performance of dye-sensitized solar cells (DSSCs) are explored. The synthesized Ag nanoparticles are immobilized onto deposited TiO2 nanoparticles by a new strategy using 3-mercaptopropionic acid (MPA), a bifunctional linker molecule. Transmission electron microscope (TEM) images show that monodispersed Ag and polydispersed TiO2 nanoparticles have an average diameter of 12 ± 3 nm and 5 ± 1 nm, respectively. Moreover, Fourier transform infrared spectroscopy (FTIR) analysis reveals that Ag nanoparticles were successfully functionalized and capped with... 

    Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Rostami, M ; Assareh, E ; Moltames, R ; Jafarinejad, T ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    Stirling engines operate in a variety of temperatures and the electric power production via dish Stirling systems could be considered as an appropriate alternative for high-temperature solar concentrator energy harvesting systems. To this end, by performing various studies and analyses on the engine, Stirling cycle, and heat exchangers while utilizing the solar energy as the input thermal energy of the Stirling engine, parameters with the highest effect on the output power and engine stability are detected and considered as optimization variables. In this case, output power, thermal efficiency, and economic evaluation are taken to be the three suitable objective functions for multi-objective... 

    Techno-economic comparative study on hydrogen and electricity cogeneration systems with CO2 capture

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Zohrabian, A ; Soltanieh, M ; Mansouri Majoumerd, M ; Arild, Ø ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    In order to achieve the international climate goals and to keep the global temperature increase below 2 °C, carbon capture and storage in large point sources of CO2 emissions has received considerable attention. In recent years, mitigation of CO2 emissions from the power sector has been studied extensively whereas other industrial point source emitters such as hydrogen industry have also great potential for CO2 abatement. This study aims to draw an updated comparison between different hydrogen and power cogeneration systems using natural gas and coal as feedstock. The goal is to show the relative advantage of cogeneration systems with respect to CO2 emission reduction costs. Accordingly, the... 

    Part load behavior of molten salt cavity receiver solar tower plants under storage mode operational mode

    , Article ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology, 26 June 2016 through 30 June 2016 ; Volume 1 , 2016 ; 9780791850220 (ISBN) Mostafavi Tehrani, S. S ; Shafiei Ghazani, A ; Taylor, R. A ; Saberi, P ; Sharif University of Technology
    American Society of Mechanical Engineers  2016
    Abstract
    The performance of the tower based concentrated solar thermal (CST-tower) plant is very sensitive to the operation strategy of the plant and the incident heat flux on the receiver. To date, most studies have been examined only the design mode characteristics of the cavity receivers, but this paper significantly expands the literature by considering non-design operating conditions of this important sub-component of the CST-tower plants. A feasible non-design operating conditions of the cavity receivers that was considered in this study is the storage mode of operation. Two practical dynamic control strategies were examined then to find the most efficient approach: fixed solar field mass... 

    Broadband and low-loss plasmonic Light trapping in dye-sensitized solar cells using micrometer-scale rodlike and spherical core-shell plasmonic particles

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 25 , 2016 , Pages 16359-16367 ; 19448244 (ISSN) Malekshahi Byranvand, M ; Nemati Kharat, A ; Taghavinia, N ; Dabirian, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion... 

    Selecting Support Layer for Electrodeposited Efficient Cobalt Oxide/Hydroxide Nanoflakes to Split Water

    , Article ACS Sustainable Chemistry and Engineering ; Volume 4, Issue 6 , 2016 , Pages 3151-3159 ; 21680485 (ISSN) Naseri, N ; Esfandiar, A ; Qorbani, M ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Energy and environment crises motivated scientists to develop sustainable, renewable, and clean energy resources mainly based on solar hydrogen. For this purpose, one main challenge is the low cost flexible substrates for designing earth abundant efficient cocatalysts to reduce required water oxidation overpotential. Here, a systematic morphological and electrochemical study has been reported for cobalt oxide/hydroxide nanoflakes simply electrodeposited on four different commercially available substrates, titanium, copper sheet, steel mesh, and nickel foam. Remarkable dependence between the used substrate, morphology, and electrocatalytic properties of nanoflakes introduced flexible porous... 

    Elucidation of charge recombination and accumulation mechanism in mixed perovskite solar cells

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 27 , 2018 , Pages 15149-15154 ; 19327447 (ISSN) Yadav, P ; Turren Cruz, S. H ; Prochowicz, D ; Tavakoli, M. M ; Pandey, K ; Zakeeruddin, S. M ; Gratzel, M ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    Organic-inorganic perovskite solar cells (PSCs) have gained considerable attention owing to their impressive photovoltaic properties and simple device manufacturing. In general, PSC employs a perovskite absorber material sandwiched between an electron and hole selective transport layer optimized with respect to optimal band alignment, efficient charge collection, and low interfacial recombination. The interfaces between the perovskite absorber and respective selective contacts play a crucial role in determining photovoltaic performance and stability of PSCs. However, a fundamental understanding is lacking, and there is poor understanding in controlling the physical processes at the... 

    Mesoscopic oxide double layer as electron specific contact for highly efficient and UV stable perovskite photovoltaics

    , Article Nano Letters ; Volume 18, Issue 4 , 2018 , Pages 2428-2434 ; 15306984 (ISSN) Tavakoli, M. M ; Giordano, F ; Zakeeruddin, S. M ; Gratzel, M ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or... 

    Effect of crystallinity and morphology of TiO2 nano-structures on TiO2:P3HT hybrid photovoltaic solar cells

    , Article Applied Solar Energy (English translation of Geliotekhnika) ; Volume 51, Issue 1 , January , 2015 , Pages 34-40 ; 0003701X (ISSN) Boroomandnia, A ; Kasaeian, A. B ; Nikfarjam, A ; Akbarzadeh, A ; Mohammadpour, R ; Sharif University of Technology
    Allerton Press Incorporation  2015
    Abstract
    A comparative study has been made of hybrid solar cells based on poly(3-hexylthiophene) (P3HT) and different nano-structures of TiO2. Electrospinning, which is a low cost production method for large area nanofibrous films, was employed to fabricate TiO2 nanofibers and spin coating method was employed to fabricate organic-inorganic hybrid solar cells based on P3HT and TiO2 nanostructures. The performance of the hybrid solar cells was analyzed for four density levels of the TiO2 nanostructure. It was found that higher densities of TiO2 leads to more interface area and generates excitons, so that the power conversion efficiency increases to... 

    A novel thermo-photovoltaic cell with quantum-well for high open circuit voltage

    , Article Superlattices and Microstructures ; Volume 83 , July , 2015 , Pages 61-70 ; 07496036 (ISSN) Kouhsari, E. S ; Faez, R ; Akbari Eshkalak, M ; Sharif University of Technology
    Academic Press  2015
    Abstract
    Abstract We design a thermo-photovoltaic Tandem cell which produces high open circuit voltage (Voc) that causes to increase efficiency (η). The currently used materials (AlAsSb-InGaSb/InAsSb) have thermo-photovoltaic (TPV) property which can be a p-n junction of a solar cell, but they have low bandgap energy which is the reason for lower open circuit voltage. In this paper, in the bottom cell of the Tandem, there is 30 quantum wells which increase absorption coefficients and quantum efficiency (QE) that causes to increase current. By increasing the current of the bottom cell, the top cell thickness must be increased because the top cell and the bottom cell should have the same current. In... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 ; 2013 , p. 483-488 ; ISBN: 9781470000000 Ghaedi, A ; Abbaspour, A ; Fotuhi-Firuzabad, M ; Moeini-Aghtaie, M ; Othman, M ; Sharif University of Technology
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    Modeling and technical-economic optimization of electricity supply network by three photovoltaic systems

    , Article Journal of Solar Energy Engineering, Transactions of the ASME ; Vol. 136, issue. 2 , 2014 ; ISSN: 0199-6231 Safarian, S ; Khodaparast, P ; Kateb, M ; Sharif University of Technology
    Abstract
    To attain an ongoing electricity economy, developing novel widespread electricity supply systems based on diverse energy resources are critically important. Several photovoltaic (PV) technologies exist, which cause various pathways to produce electricity from solar energy. This paper evaluates the competition between three influential solar technologies based on photovoltaic technique to find the optimal pathways for satisfying the electricity demand: (1) multicrystalline silicon; (2) copper, indium, gallium, and selenium (CIGS); and (3) multijunction. Besides the technical factors, there are other effective parameters such as cost, operability, feasibility, and capacity that should be... 

    Design and modeling of an integrated CHP system with solar hydrogen/methane fueled pem fuel cell for residential applications

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 6B , November , 2014 ; ISBN: 9780791849521 Amirian, H ; Sayedin, F ; Maroufmashat, A ; Sharif University of Technology
    Abstract
    This paper describes the designing and evaluation of an alternative energy system which consists of PEMFC, PV, PEM electrolyser, methane reformer and hydrogen tank. In order to find out the minimum capacity of the components, a system sizing model is developed in MATLAB based on meteorological and electrical demand data. Three scenarios are considered based on different combinations of solar energy and fossil fuel energy as energy resources. The heating energy produced by the fuel cell is recovered for supplying domestic hot water while the system would supply electrical energy. Results show that system sizing strongly depends on scenarios and unit cost of electricity decreases through the... 

    Reliability evaluation of a composite power system containing wind and solar generation

    , Article Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference, PEOCO 2013 2013, Article , Pages 483-488 ; number 6564597 , 2013 , Pages 483-488 ; 9781467350730 (ISBN) Ghaedi, A ; Abbaspour, A ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Othman, M ; Sharif University of Technology
    2013
    Abstract
    Variability and uncertainty of wind and photovoltaic (PV) generations greatly influence technical and financial aspects of power systems. This paper examines the potential impacts of large-scale wind and PV farms on reliability level of composite generation and transmission systems. At first, reliability models of renewable-based units are developed. In these models, both component failure rates and uncertainty nature of renewable resources are taken into account. Using the proposed technique, the multi-state analytical models of a wind farm placed in Manjil and a PV farm placed in Jask both in Iran are extracted. Then, reliability studies of high renewable-energies penetrated power system... 

    TiO 2 fibers enhance film integrity and photovoltaic performance for electrophoretically deposited dye solar cell photoanodes

    , Article ACS Applied Materials and Interfaces ; Volume 3, Issue 3 , February , 2011 , Pages 638-641 ; 19448244 (ISSN) Shooshtari, L ; Rahman, M ; Tajabadi, F ; Taghavinia, N ; Sharif University of Technology
    2011
    Abstract
    Nanoparticulated TiO 2 fibers as one-dimensional long structures were introduced into TiO 2 P25 nanoparticle films using coelectrophoretic deposition. This prevented the usual crack formation occurring in wet coatings, and resulted in less porosity and higher roughness factor of the films that provided more favorable conditions for electron transport. The films used as the photoanode of a dye solar cell (DSC) produced 65% higher photovoltaic efficiency. TiO 2 fibers can be excellent binders in single-step, organic-free electrophoretic deposition of TiO 2 for DSC photoanode  

    Nonlinear adaptive control of grid-connected three-phase inverters for renewable energy applications

    , Article International Journal of Control ; 2015 ; 00207179 (ISSN) Mahdian Dehkordi, N ; Namvar, M ; Karimi, H ; Piya, P ; Karimi Ghartemani, M ; Sharif University of Technology
    Abstract
    Distributed generation (DG) units are often interfaced to the main grid using power electronic converters including voltage-source converters (VSCs). A VSC offers dc/ac power conversion, high controllability, and fast dynamic response. Because of nonlinearities, uncertainties, and system parameters’ changes involved in the nature of a grid-connected renewable DG system, conventional linear control methods cannot completely and efficiently address all control objectives. In this paper, a nonlinear adaptive control scheme based on adaptive backstepping strategy is presented to control the operation of a grid-connected renewable DG unit. As compared to the popular vector control technique, the...