Loading...
Search for: spark-plasma-sintering
0.007 seconds
Total 28 records

    Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering

    , Article Ceramics International ; Volume 45, Issue 13 , 2019 , Pages 16288-16296 ; 02728842 (ISSN) Orooji, Y ; Ghasali, E ; Moradi, M ; Derakhshandeh, M. R ; Alizadeh, M ; Shahedi Asl, M ; Ebadzadeh, T ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A near fully dense mullite-TiB2-CNTs hybrid composite was prepared successfully trough spark plasma sintering. 1 wt%CNT and 10 wt%TiB2 were mixed with nano-sized mullite powders using a high energy mixer mill. Spark plasma sintering was carried out at 1350 °C under the primary and final pressure of 10 MPa and 30 MPa, respectively. XRD results showed mullite and TiB2 as dominant crystalline phases accompanied by tiny peaks of alumina. The microstructure of prepared composites demonstrated uniform distribution of TiB2 reinforcements in mullite matrix without any pores and porosities as a result of near fully densified spark plasma sintered composite. The fracture surface of composite revealed... 

    Investigation the Correlation Between Nanocrystallization and Consolidation Mechanisms and Their Effect on Magnetic Properties of Bulk Finemet Type Alloys

    , Ph.D. Dissertation Sharif University of Technology Gheiratmand, Tayebeh (Author) ; Madaah Hosseini, Hamid Reza (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    Finemet soft magnetic alloys in the form of toroidally winded ribbons are not suitable for industrial applications where a large volume of magnetic materials is required. Production of Finemet bulk alloy by powder metallurgy techniques is an applicable method to produce complex component with isotropic magnetic properties which are the same as ribbons. In this research, Finemet bulk magnetic alloy with composition of has been produced by consolidation of amorphous powders obtained by milling of melt-spun ribbons. At the all stages, the structure and magnetic properties were studied using X-ray diffraction, differential scanning calorimetry, transmission electron microscopy, scanning... 

    Fabrication of FINEMET bulk alloy from amorphous powders by spark plasma sintering

    , Article Powder Technology ; Volume 289 , 2016 , Pages 163-168 ; 00325910 (ISSN) Gheiratmand, T ; Madaah Hosseini, H. R ; Davami, P ; Sarafidis, C ; Sharif University of Technology
    Elsevier 
    Abstract
    Finemet bulk soft magnetic alloy was fabricated by spark plasma sintering of the milled ribbons. The amorphous melt-spun ribbons were milled for 36min by high energy vibrational mill and then sieved to separate particles smaller than 125μm. The size distribution of particles was determined by a laser diffraction particle size analyzer. Spark plasma sintering was carried out at super-cooled liquid region for short times of 7 and 21min. The structure of bulk samples was characterized using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and transmission electron microscopy techniques. The magnetization and coercivity of samples were measured using SQUID... 

    Spark plasma sintering of a multilayer thermal barrier coating on Inconel 738 superalloy: Microstructural development and hot corrosion behavior

    , Article Ceramics International ; Volume 42, Issue 2 , 2016 , Pages 2770-2779 ; 02728842 (ISSN) Pak Seresht, A. H ; Javadi, A. H ; Bahrami, M ; Khodabakhshi, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In the present work, spark plasma sintering (SPS) process was employed to prepare a nanostructured yttria-stabilized zirconia (8YSZ) coating on a nickel-based superalloy (INCONEL 738) with functionally graded structure. A stack layer of INCONEL 738/NiCrAlY powder/Al foil/NiCrAlY+YSZ powder/YSZ powder was SPSed in a graphite die at an applied pressure of 40 MPa under an vacuum atmosphere (8 Pa). The sintering temperature was ∼1040 °C. For comparison purpose, the air plasma spray (APS) technique was employed to prepare the thermal barrier coating (TBC). Microstructural studies by scanning electron microscopy showed that the SPSed coating was sound and free of interfacial cracks and large... 

    Microstructural characterization and dry sliding wear behavior of spark plasma sintered Cu-YSZ composites

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 26, Issue 7 , 2016 , Pages 1745-1754 ; 10036326 (ISSN) Mirazimi, J ; Abachi, P ; Purazrang, K ; Sharif University of Technology
    Nonferrous Metals Society of China  2016
    Abstract
    In the present study, yttria stabilized zirconia (YSZ) reinforced Cu matrix composite specimens were produced by spark plasma sintering (SPS). For comparison, pure Cu specimen was also produced in the same conditions. The effect of particles content on microstructure, relative density, electrical conductivity, and Vickers hardness was evaluated. The pin-on-disk test was also performed to determine dry sliding wear behavior of specimens under different wear conditions. After sliding wear tests, the worn surfaces were examined by field emission scanning electron microscopy (FE-SEM). Microstructural study showed satisfactory distribution of reinforcement particles in copper matrix. The relative... 

    Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites

    , Article Nanoscale ; Volume 9, Issue 35 , 2017 , Pages 12779-12820 ; 20403364 (ISSN) Azarniya, A ; Sovizi, S ; Azarniya, A ; Rahmani Taji Boyuk, M. R ; Varol, T ; Nithyadharseni, P ; Madaah Hosseini, H. R ; Ramakrishna, S ; Reddy, M. V ; Sharif University of Technology
    Abstract
    Recently, a wide variety of research works have focused on carbon nanotube (CNT)-ceramic matrix nanocomposites. In many cases, these novel materials are produced through conventional powder metallurgy methods including hot pressing, conventional sintering, and hot isostatic pressing. However, spark plasma sintering (SPS) as a novel and efficient consolidation technique is exploited for the full densification of high-temperature ceramic systems. In these binary nanocomposites, CNTs are added to ceramic matrices to noticeably modify their inferior properties and SPS is employed to produce fully dense compacts. In this review, a broad overview of these systems is provided and the potential... 

    Iron-borosilicate soft magnetic composites: the correlation between processing parameters and magnetic properties for high frequency applications

    , Article Journal of Magnetism and Magnetic Materials ; Volume 429 , 2017 , Pages 241-250 ; 03048853 (ISSN) Gheiratmand, T ; Madaah Hosseini, H .R ; Seyed Reihani, S. M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Iron-borosilicate soft magnetic composites are suitable magnetic materials for high temperature and high frequency applications. In this research two different techniques have been applied to fabricate these composites: uniaxial pressing following by sintering and spark plasma sintering. Different processing parameters including the content of borosilicate, the amount of compaction pressure and the size of iron particles have been evaluated through the study of microstructure and magnetic properties. The microstructural observations showed that the borosilicate is distributed on the iron grain boundaries enhancing the resistivity and causing the loss of eddy currents. Increasing the... 

    Spark plasma sintering of SnO2 based varistors

    , Article Ceramics International ; Volume 46, Issue 12 , August , 2020 , Pages 20429-20436 Maleki Shahraki, M ; Chermahini, M. D ; Abdollahi, M ; Irankhah, R ; Mahmoudi, P ; Karimi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, for the first time, SnO2-based varistors were fabricated via spark plasma sintering technique (SPS) and the microstructure and electrical properties of these varistors were investigated. Furthermore, the effect of post-annealing temperature in oxygen atmosphere on electrical properties of the SPSed samples was studied. The SPS process was performed at the sintering temperatures of 600, 650, and 700 ᵒC for 15 min with a maximum pressure of 90 MPa under vacuum condition. The SPSed sample which was sintered at 650 ᵒC possessed maximum density of 98% and the ultra-fine-grained microstructure with the mean grain size of 380 nm. Surprisingly, all SPSed samples exhibited Ohmic...