Loading...
Search for: steam
0.016 seconds
Total 138 records

    Investigation and Simulation of Overcooling Transients of The Bushehr's VVER-1000 Nuclear Power Plant with RELAP5/MOD3.3

    , M.Sc. Thesis Sharif University of Technology Yousefi, Amir Hossein (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    During the operation of a nuclear power plant, the reactor pressure vessel (RPV) is exposed to a variety of pressure and thermal stresses and neutron radiations. This will cause the loss of the initial strength of the reactor vessel component. During the occurrence of some of accidents, an excessive cooling of the coolant inside the RPV takes place which in the term is called overcooling transients. In addition, in some of these events, a break in a section of the circuit will reduce the water level at the core of the reactor. By reducing the water level, the existing emergency makeup water systems are activated and inject water into the reactor. The temperature of the added water is much... 

    Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production

    , Article Journal of Cleaner Production ; Volume 180 , 2018 , Pages 655-665 ; 09596526 (ISSN) Shahhosseini, H. R ; Iranshahi, D ; Saeidi, S ; Pourazadi, E ; Klemeš, J. J ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This work proposes a novel configuration for steam methane reformers (SMR) in order to improve their syngas stoichiometric ratio (SR). This is a decisive element for methanol producers to increase their production tonnage. While the optimum theoretical SR value is around 2, many conventional SMRs operate far beyond this value due to thermodynamic equilibrium limitations. In the new SMR design CO2, which could be an industrial off gas, is injected into the reactor in multiple stages. The corresponding CO2 injection flow rate is determined by a multi-objective optimization method. The optimum flow rate at each stage is chosen to minimise abs (SR-2) while maintaining the CH4 conversion at its... 

    Synthesis and characterization of supportless Ni-Pd-CNT nanocatalyst for hydrogen production via steam reforming of methane

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 3 , 2018 , Pages 1319-1336 ; 03603199 (ISSN) Chaichi, A ; Sadrnezhaad, S. K ; Malekjafarian, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Supportless Ni-Pd-0.1CNT foamy nanocatalyst with specific surface area of 611.3 m2/g was produced by electroless deposition of nickel, palladium and multiwall carbon nanotube (MWCNT) on interim polyurethane substrate. Application of temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) data into Kissinger (Redhead) kinetic model showed lessening of their activation energies due to Pd and CNT addition. Presence of foamy Ni/SiC caused 8% higher steam reforming of methane; while Ni-Pd-0.1CNT presence resulted in 22% higher methane conversion. The catalytic behavior of the samples was described by morphological and compositional studies which were carried out by... 

    Using CFD simulations to improve the air-cooled steam condenser performance in severe windy conditions via proper tuning of blades pitch angles

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Darbandi, M ; Farhangmehr, V ; Khorshidi Behzadi, H. R ; Schneider, G. E ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The use of air-cooled steam condenser (ACSC) in thermal power plants has become so normal since a few decades ago. It is because there are so many valuable advantages with the ACSC implementation, e.g., little dependency on water consumption and benefiting from the forced convection heat transfer instead of the natural one to condense the steam. However, the thermal performance of an ACSC can be readily defected by the ambient wind; specifically, when the ambient temperature is high. This research work benefits from the computational fluid dynamics tool to study the details of ACSC's thermal performance in such undesirable ambient windy conditions. Furthermore, this work suggests an... 

    Geometrical optimization of a steam jet-ejector using the computational fluid dynamics

    , Article ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018, 15 July 2018 through 20 July 2018 ; Volume 2 , 2018 ; 08888116 (ISSN); 9780791851562 (ISBN) Darbandi, M ; Sabzpoushan, S. A ; Schneider, G. E ; Fluids Engineering Division ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    The vacuum systems play crucial role in various industries including, but not limited to, power generation, refrigeration, desalination, and aerospace engineering. There are different types of vacuum systems. Among them, the ejector or vacuum pump is highly utilized due to its low capital cost and easy maintenance. Generally, the better operation of a vacuum system can dramatically affect the performance of its upper-hand systems, e.g., the general efficiency of a thermal power plant cycle. This can be achieved if such vacuum systems are correctly designed, implemented, and operated. The focus of this work is on an existing steam jet-ejector, whose primary flow is a high pressure superheated... 

    Design and analysis of a thermal hydraulic integral test facility for bushehr nuclear power plant

    , Article Progress in Nuclear Energy ; Volume 51, Issue 3 , 2009 , Pages 443-450 ; 01491970 (ISSN) Khoshnevis, T ; Jafari, J ; Sohrabpour, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, design and analysis of a thermal hydraulic integral test facility for Bushehr Nuclear Power Plant (NPP) is presented. The Bushehr Integral Test Facility (BITF) is a test facility designed to model the thermal-hydraulic behaviours of the Bushehr NPP (VVER-1000) pressurized water reactors currently in use in IRAN. These reactors have unique features that differ from other PWR designs. The BITF simulates the major components and systems of the reference NPP, making it possible to examine postulated small and medium break a loss of coolant accidents (LOCAs) and operational transients. The BITF is a volume-scaled model (1:1375). To ensure that gravitational forces remain equal to... 

    Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor

    , Article International Journal of Hydrogen Energy ; Volume 34, Issue 3 , 2009 , Pages 1275-1291 ; 03603199 (ISSN) Dehkordi, A.M ; Memari, M ; Sharif University of Technology
    2009
    Abstract
    A compartment model was developed to describe the flow pattern of gas within the dense zone of a membrane-assisted fluidized-bed reactor (MAFBR), in the bubbling mode of operation for steam reforming of methane both with (adiabatic) and without (isothermal) entering oxygen. Considering such a flow pattern and using the experimental data reported elsewhere [Roy S, Pruden BB, Adris AM, Grace JR, Lim CJ. Fluidized-bed steam methane reforming with oxygen input. Chem Eng Sci 1999; 54:2095-2102.], the parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined and fair agreements were obtained between model predictions and experimental data.... 

    Thermodynamic optimization of design variables and heat exchangers layout in HRSGs for CCGT, using genetic algorithm

    , Article Applied Thermal Engineering ; Volume 29, Issue 2-3 , 2009 , Pages 290-299 ; 13594311 (ISSN) Mohagheghi, M ; Shayegan, J ; Sharif University of Technology
    2009
    Abstract
    The heat recovery steam generator (HRSG) is one of the few equipments that are custom made for combined cycle power plants, and any change in its design affects all performance parameters of a steam cycle directly. Thus providing an optimization tool to optimize its design parameters and the layout of its heat exchangers is of great importance. A new method is introduced for modeling a steam cycle in advanced combined cycles by organizing non-linear equations and their simultaneous solutions by use of the hybrid Newton methods in this article. Thereafter, optimal thermodynamic performance conditions for HRSGs are calculated with the help of the genetic algorithm. In the conclusion, the... 

    Improvement of a Steam Turbine Performance in a Combined Power Cycle Benefiting from Aerodynamics Solutions Applied on its Air-Cooled Condenser

    , M.Sc. Thesis Sharif University of Technology Khorshidi Behzadi, Hamid Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Air-cooled condenser is widely used in thermal power plants as its main cooling system. However, the thermal capacity of air-cooled condensers reduces considerably in environmental wind drafts. So, the purpose of this study is to find practicable solutions to minimize the mal-performance of air-cooled condensers in windy conditions in either design or off-design conditions and consequently prevent the related steam turbines power reduction. The target combined cycle power plant consists of 4*160 MW steam turbines and 4 air-cooled condensers in its steam cycle part. This research presents two general and practical remedies, which are also applicable to many different powerplants irrespective... 

    Component and mode models for the short-term scheduling of combined-cycle units

    , Article IEEE Transactions on Power Systems ; Volume 24, Issue 2 , 2009 , Pages 976-990 ; 08858950 (ISSN) Liu, C ; Shahidehpour, M ; Li, Z ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2009
    Abstract
    We propose a component model for the scheduling of combined-cycle gas turbine (CCGT) units by mixed-integer programming (MIP) in which combustion turbines (CTs) and steam turbines (STs) are modeled as individual units. The hourly schedule of CCGT based on the component model is compared with that of the mode model. The modeling of modes, which includes a combination of CTs and STs, would require certain approximations for representing fuel input-power output curves, ramping rate limits, minimum operating time limits, etc. The approximations can result in sub-optimal schedules. Furthermore, the commitment and dispatch of CCGTs based on the mode model will require a real-time dispatch to... 

    Process integration of membrane reactor for steam methane reforming for hydrogen separation with CO2 capture in power production by natural gas combined cycle

    , Article 9th International Conference on Greenhouse Gas Control Technologies, GHGT-9, Washington DC, 16 November 2008 through 20 November 2008 ; Volume 1, Issue 1 , 2009 , Pages 279-286 ; 18766102 (ISSN) Najmi, B ; Soltanieh, M ; US Department of Energy ; Sharif University of Technology
    2009
    Abstract
    In this paper simulation results for integration of CO2 pre-combustion capture by steam methane reforming (SMR) in membrane reactors (MR) with natural gas fired combined cycle (NGCC) power plants are presented. The integrated combined cycle was simulated by GTPRO (Thermoflow) simulator along with the results from simulation of membrane reactor for SMR process developed in this work. The results show that the overall efficiency of the integrated combined cycles decreased due to the energy required for SMR process. On the other hand, by integration of MR in combined cycles, emissions of CO2 to the atmosphere can be avoided. © 2009 Elsevier Ltd. All rights reserved  

    Experimental Investigation of Mechanism of Wettability Alteration Induced By Hot Water and Steam Injection

    , M.Sc. Thesis Sharif University of Technology Salehi, Afshin (Author) ; Masihi, Mohsen (Supervisor)
    Abstract
    One of the most important production mechanisms of fractured reservoirs is wettability alteration. Since most fractured reservoirs are carbonate, and thus are often oil-wet; production of these reservoirs is facing their special challenges. Since most of our country reservoirs are fractured carbonate type, determination of the exact mechanisms of their production is necessary. Thermal EOR methods traditionally have been welcomed by big oil companies. Also, these methods of enhanced oil recovery techniques, have a much greater share in the production history of all EOR methods, rather than other EOR methods. Exponentially decreasing of oil viscosity on heating, is the main reason for using... 

    Design of Steam Turbine Control Valves Seat on Site Machinning Robot

    , M.Sc. Thesis Sharif University of Technology Torabi Goodarzi, Ashkan (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Designing a part of an on site repair system for refurbishing steam turbine high pressure control valve has been done in this project. The main role of this control valve is to control the input flow to the turbine in different working condition . However, due to high temperature and pressure, the seat is exposed to erosion. R epairing this part in workshop requires great amount of time and cost, because the valve is a part of the turbine body and must be cut and rewelded to the turbine body. S o using an on-site repair method is highly needed. In addition, due to the limited visibility and access to the valve seat, and accurate... 

    Modeling of a Hybrid Solid Oxide Fuel Cell Microturbine System with Steam Injection

    , M.Sc. Thesis Sharif University of Technology Farmand, Pooria (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    Hybrid Solid Oxide Fuel Cell-Micro Gas Turbine systems(SOFC-MGT) present opportunities for improvement over conventional systems, including high efficiency, cogeneration, and the potential for low carbon emmisions. In order to advance toward commercialization, Hybrid systems need to model under design point and off-design situations that maintain safe and efficient operations, also exhibiting favorable exergetic and economic performance. The present work investigates the hybrid SOFC-MGT performance and effects of steam injection, humidity effect, and fuel change in the system. The 1-D model of SOFC stack has been developed in EES Code and then coupled with a microturbine’s components with... 

    A non-linear controller design for the evaporator of a heat recovery steam generator

    , Article Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy ; Volume 223, Issue 5 , 2009 , Pages 535-541 ; 09576509 (ISSN) Tahami, F ; Nademi, H ; Sharif University of Technology
    2009
    Abstract
    This article addresses a combined approach of sliding mode control (SMC) with generalized predictive control (GPC) to achieve fluid temperature control in the evaporator of a heat recovery steam generator. The evaporator is modelled as a first-order plus dead time process. The model is developed using the experimental data obtained at an actual power plant. An output error identification algorithm is used to minimize the error between the model and the experiments in different operating conditions. A GPC method is exploited to optimize the sliding surface and the coefficients of the switching functions used in SMC. The proposed control schemes are evaluated by thorough simulation for... 

    Simulation study of Steam Assisted Gravity Drainage (SAGD) in fractured systems

    , Article Oil and Gas Science and Technology ; Volume 64, Issue 4 , 2009 , Pages 477-487 ; 12944475 (ISSN) Fatemi, S. M ; Sharif University of Technology
    2009
    Abstract
    The Steam Assisted Gravity Drainage (SAGD) process, a developed Enhanced Oil Recovery (EOR) process to recover oil and bitumen, has been studied theoretically and experimentally in conventional reservoirs and models and is found a promising EOR method for certain heavy oil reservoirs. In this work simulation studies of the SAGD process were made on different fractured models consisting of fractures in both Near Well Region (NWR) and Above Well Region (AWR) and even in the presence of networked fractures. At early stage of the SAGD process in fractured system, steam moves through the fractures first and then the matrix blocks are heated primarily by conduction and possibly some steam... 

    Reliability Centered Maintenance (RCM) Implementation in Thermal and Combined Cycle Power Plants

    , M.Sc. Thesis Sharif University of Technology Sabouhi, Hamed (Author) ; Abbaspour Tehrani Fard, Ali (Supervisor) ; Fotuhi-Firuzabad, Mahmoud (Supervisor)
    Abstract
    Power generation stations, which are commonly called power plants, are treated as the core module of power systems and are in charge of producing power to be transmitted and distributed to the end consumers. As the beating heart of power industry, power plants need to be available and reliable all the time and so do their constituent components since the need for reliable electricity, nowadays, is ever increasingly highlighted. The reason lies in the rapid jump of population growth in one hand and the incredible amount of damages as a consequence to the power interruptions due to the power plant component outages, if happened, on the other one. So, power plants have to be kept within a... 

    Reliability Evaluation of Heat Recovery Steam Generator of Combined Cycle Thermal Power Plants

    , M.Sc. Thesis Sharif University of Technology Khaksar Haghani Dehkordi, Siamak (Author) ; Saeedi, Mohammad Hassan (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Combined cycle power plants consist of three main sections, namely gas turbine, Heat Recovery Steam Generator (HRSG) and steam turbine. Occurring failure in HRSG causes the steam turbine trip, so the reliability assessment of HRSG has a great importance for forecasting the probability of occurring failure and also reducing failure causes. In this project, the reliability of HRSG considering effects of aging phenomenon, maintenance and, environmental and operational conditions on reliability is modeled. Afterward a method to estimate the model parameters is introduced. Using present method, failure data of six HRSGs of a plant each with a capacity of 50 MW is analyzed and the model parameters... 

    Numerical Simulation to Improve the Performance of Air-cooled Steam Condenser Ejector and Steam Turbine Operation in a Rankine Cycle

    , M.Sc. Thesis Sharif University of Technology Sabzpoushan, Ali (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Nowadays, widespread needs for creating low pressure ambient in various industries make vacuum systems have different research and industrial applications. One of these applications is in cooling system of Rankine power cycle. In this case, the performance of the vacuum system has a direct and significant effect on the cooling performance of the condenser and consequently, power production of the steam turbine. Also, a considerable part of deration in thermal power plants industry is due to the thermal deration of the cooling systems. This is mostly because of malfunction of the condenser due to ambient temperature rise. Therefore, by providing suitable solutions to improve the efficiency... 

    Developing a mathematical model for reforming of glycerol towards a comparative evaluation of the liquid vs. gas phase medium

    , Article International Journal of Hydrogen Energy ; Volume 44, Issue 49 , 2019 , Pages 26764-26772 ; 03603199 (ISSN) Nayernia, Z ; Kazemeini, M ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Glycerol might be converted into hydrogen through a catalytic reforming process. In order to design an effective route, the choice of reaction conditions and in particular its medium considered yet a crucial issue still needing further investigations. In this research, a mathematical model of reforming processes in vapor (i.e., steam reforming (SR) and liquid phase (i.e.; aqueous phase reforming (APR)) were developed. This was performed in terms of understudying effects of parameters including the reactor diameter, catalyst morphology (i.e., particle size) and mass flow rate on the glycerol conversion. Then, a superior reaction medium in terms of these variables was determined. For data...