Loading...
Search for: steam
0.013 seconds
Total 138 records

    Rigorous silica solubility estimation in superheated steam: Smart modeling and comparative study

    , Article Environmental Progress and Sustainable Energy ; Volume 38, Issue 4 , 2019 ; 19447442 (ISSN) Rostami, A ; Shokrollahi, A ; Esmaeili Jaghdan, Z ; Ghazanfari, M. H ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    One of the main issues of wastewater treatment is the silica deposition in steam turbines. Evaporation of silica with the steam in adequate concentration is one of the main sources of scale formation in steam turbines. In this study, the authors introduce the utilization of a genetic-based approach—gene expression programming (GEP)—for solubility prognostication of the silica in superheated steam of boilers with respect to water silica content and pressure. The result of GEP mathematical approach is a new algebraic formula to achieve our goals. Developed model predicts the silica solubility in the range of 0.8–22.1 MPa and 1–500 mg/kg for pressure and boiler water silica content,... 

    On the origin of intermediate temperature brittleness in La-based bulk metallic glasses

    , Article Journal of Alloys and Compounds ; Volume 770 , 2019 , Pages 535-539 ; 09258388 (ISSN) Asadi Khanouki, M. T ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The effect of strain rate on the ductility of a La-based bulk metallic glass (BMG) over a wide temperature range, and the correlation between ductility and relaxation processes within this alloy are investigated in the present work. The three point bending test and dynamic mechanical analysis are employed to study these phenomena. It is found that the activation energies of the nearly constant loss (NCL) relaxation and intermediate temperature brittleness are almost identical. This observation reveals that the NCL relaxation, as a locally confined or caged dynamics, contributes as the main source of intermediate temperature brittleness in La-based BMGs. © 2018 Elsevier B.V  

    Exergy analysis and thermodynamic optimisation of a steam power plant-based Rankine cycle system using intelligent optimisation algorithms

    , Article Australian Journal of Mechanical Engineering ; 2019 ; 14484846 (ISSN) Elahifar, S ; Assareh, E ; Moltames, R ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    In this paper, exergy analysis of a steam power plant located in southern Iran named Zarand power plant has been studied. In order to optimize the performance of the Rankine cycle and achieve higher exergy efficiency, several parameters have been considered as decision variables. Knowing that there is the ability to change some of the parameters in the specific range in the process of electricity production in power plant, temperature and output pressure of the boiler and output pressure of four steps of extraction turbine have been selected as six decision variables. Also, exergy efficiency has been considered as the objective function. For this purpose, the exergy efficiency of the system... 

    Axial Turbine Performance Improvement Under Steam Injection

    , M.Sc. Thesis Sharif University of Technology Hooshyari, Taghi (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    Steam Injection is one of the most effective methods to improve performance and emission reduction of a gas turbine engine. In this study, the effect of using steam injection on the performance of a mechanical drive gas turbine engine is simulated and power output, thermal efficiency, compressor surge margin, velocity field in axial turbine and turbine isentropic efficiency are examined. In the two-shaft configuration, turbine inlet temperature and gas generator spool speed are the two parameters limiting the output power. On the other hand, matching of compressor turbine and power turbine is an important task that affects the performance of engine under steam injection condition. Based on... 

    Experimental study of dynamic imbibition during water flooding of naturally fractured reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 174 , 2019 , Pages 1-13 ; 09204105 (ISSN) Harimi, B ; Masihi, M ; Mirzaei Paiaman, A ; Hamidpour, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Capillary imbibition is an important recovery mechanism in naturally fractured reservoirs when water-filled fractures surround water-wet matrix blocks. A large amount of studies of imbibition process is simply total or partial immersion of nonwetting phase saturated rock in aqueous wetting phase. However, water advance in fractures during water flooding or water encroachment from an active aquifer introduces time dependent boundary conditions where invariant exposure of rock surface to water is not representative. In this work, a laboratory simulated matrix-fracture system was used to investigate different aspects of imbibition in the presence of fracture fluid flow (namely dynamic... 

    CFD modeling of gasification process in tapered fluidized bed gasifier

    , Article Energy ; Volume 191 , 2020 Askaripour, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This article presents a two-dimensional simulation of the coal gasification in tapered fluidized bed gasifier. The effects of tapered angle, gasifier temperature, velocity of gasifying agent, and steam-to-air ratio on the gas compositions, lower heating value (LHV), and higher heating value (HHV) were examined. In order to find the appropriate operating conditions of coal gasification, carbon conversion efficiency (CCE) and cold gas efficiency (CGE) were also explored. It was found that with an increase of the gasifier temperature, CCE and CGE of the tapered gasifier diminishes. Increasing tapered angle results in a decrease of the LHV and HHV of the gas products, whereas the CCE of... 

    Propane steam reforming on mesoporous NiO–MgO–SiO2 catalysts for syngas production: Effect of the MgO/SiO2 molar ratio

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 46 , 2020 , Pages 24840-24858 Barzegari, F ; Kazemeini, M ; Rezaei, M ; Farhadi, F ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, a series of NiO-xMgO-SiO2 catalysts with various MgO/SiO2 molar ratios were prepared via precipitation method followed by a hydrothermal treatment in the presence of PVP as surfactant. The synergic effect between MgO and SiO2 leading to the various characteristic and catalytic performance during propane steam reforming was investigated in detail. The results showed that 15 wt% NiO-0.5MgO–SiO2 catalyst possessed the highest catalytic activity (68.9% conversion for C3H8 at 550 °C) with a negligible amount of carbon formation after 20 h of reaction duration. This superior catalytic performance can be attributed to the enhanced basicity strength along with strong metal-support... 

    Preparation of mesoporous nanostructure NiO–MgO–SiO2 catalysts for syngas production via propane steam reforming

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 11 , 2020 , Pages 6604-6620 Barzegari, F ; Kazemeini, M ; Farhadi, F ; Rezaei, M ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, the propane steam reforming (PSR) as a promising alternative route over a mesoporous NiO–MgO–SiO2 catalyst to produce syngas (SG) was undertaken. This catalyst was prepared using a co-precipitation method followed by hydrothermal treatment. The influence of such catalyst preparation factors as the hydrothermal time and temperature, pH and calcination temperature on the physicochemical characteristics of the prepared samples were examined. Next, these materials were characterized through the BET-BJH, XRD, TPR, and FTIR analyses. The thermal stability of this catalyst was tested through the TGA and DTA techniques. Furthermore, the deactivation of the calcined catalysts at... 

    Thermal performance assessment of an evaporative condenser-based combined heat pump and humidification-dehumidification desalination system

    , Article Desalination ; Volume 496 , 2020 Faegh, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A new design for heat pump integrated humidification-dehumidification (HDH-HP) desalination cycles was proposed in the current experimental study. An evaporative condenser was designed and fabricated instead of a separate humidifier, heater, and air/water-cooled condensers find in previous HDH-HP systems. Meanwhile, the air dehumidification process in this work directly occurred inside the heat pump evaporator. The effect of several operating parameters such as ambient wet-bulb temperature, spraying saline water and airflow rates, compressor speed, superheat, and evaporator saturation temperature control modes of the electronic expansion valve (EEV) on freshwater production and GOR were... 

    Optimal Model of Integrated Water Network to Reduce the Freshwater and Energy Consumption and Produce Wastewater at Power plant

    , M.Sc. Thesis Sharif University of Technology Kahe, Sadegh (Author) ; Avami, Akram (Supervisor)
    Abstract
    In recent years, there has been the extensive researches on energy and water efficiency due to the increasing stress on these resources. Therefore, the water-energy nexus in large industries, especially power plants, has become very important. In the present study, the water and energy nexus has been analyzed using energy analysis tools, exergy, economic and environmental in a combined cycle power plant. The nexus are observed in the boiler blow-downs, leakage of steam traps, cooling of the air entering the compressor and injection of steam into the combustion chamber, which have been studied in different scenarios to improve water and energy consumption and reduce environmental impact. In... 

    Simulation, Integration, Optimization of Conversion of Natural Gas to Olefins by Methanol Production Process with ASPEN PLUS and GAMS Softwares

    , M.Sc. Thesis Sharif University of Technology Foroughi Doust, Mohsen (Author) ; Rashtchian, Davoud (Supervisor) ; Sharifzadeh, Mahdi (Supervisor)
    Abstract
    Considering the supply and demand market of natural gas, methanol, propylene and ethylene and the propylene value chain, it is expected that the design of the propylene production process from methanol produced from natural gas and its implementation in Iran country can significantly flourish the production of polypropylene, acrylonitrile and Etc. On the other hand, with the industrialization of this process, the uncontrolled export of methanol from Iran to countries such as China and the devaluation of methanol will be prevented. In this report, the process of producing synthetic gas from natural gas using autothermal reactor and heat exchange reforming, separation and storage of carbon... 

    Comparative process modeling and techno-economic evaluation of renewable hydrogen production by glycerol reforming in aqueous and gaseous phases

    , Article Energy Conversion and Management ; Volume 225 , December , 2020 Khodabandehloo, M ; Larimi, A ; Khorasheh, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a comparative techno-economic evaluation of hydrogen production by glycerol reforming in aqueous and gaseous phases are presented. To accomplish the techno-economic evaluation, firstly the process modeling and design are presented. Based on the equipment purchased costs, with 80 kg/h hydrogen production, the total cost of hydrogen production is estimated 3.65 and 3.55 $/kgH2 for steam reforming and aqueous phase reforming plants, respectively. Regarding the installation factor in the equipment costs, the total cost of hydrogen production is estimated 7.49 and 7.45 $/kgH2 for steam reforming and aqueous phase reforming plants, respectively. To investigate the impact of... 

    Impact of rock mineralogy on reservoir souring: A geochemical modeling study

    , Article Chemical Geology ; Volume 555 , November , 2020 Li, H ; Zhang, L ; Liu, L ; Shabani, A ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    The petroleum industry suffers from reservoir souring phenomena, which has negative impacts on production facilities, health, and environment. Injection of incompatible water into the reservoir (waterflooding), which is considered as an enhanced oil recovery (EOR) method, is one of the most common causes of reservoir souring. In general, injected brine, especially seawater, contains high amounts of sulfate ion (SO42−). A high concentration of sulfate in the presence of sulfate-reducing bacteria (SRB) leads to the microbial reservoir souring. During this phenomenon, sulfide, specifically hydrogen sulfide gas (H2S) appears in the producing fluid of the reservoir. In this paper, a coupled... 

    Hydrogel materials as an emerging platform for desalination and the production of purified water

    , Article Separation and Purification Reviews ; 2020 , Pages 1-20 Salehi, A. A ; Ghannadi Maragheh, M ; Torab Mostaedi, M ; Torkaman, R ; Asadollahzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Water is the most abundant liquid on Earth, but only 2.5% of worldwide water are fresh. It is impossible to ignore the importance of water in almost every process on Earth, from the smallest bacteria life to the formation of the continents. Today, efforts for the desalination of seawater and brackish water are critical to produce drinking water. In recent years, a novel material: hydrogel, was considered in desalination processes. Interesting hydrogel applications were proposed for forward osmosis desalination, solar still, electrodialysis, and capacitive desalination. Simple and inexpensive desalination ways for drinking water production are needed. Hydrogel compounds are one of the leading... 

    Operation of an industrial steam reformer under severe condition: a simulation study

    , Article Canadian Journal of Chemical Engineering ; Volume 86, Issue 4 , 29 July , 2008 , Pages 747-755 ; 00084034 (ISSN) Shayegan, J ; Motamed Hashemi, M. M. Y ; Vakhshouri, K ; Sharif University of Technology
    2008
    Abstract
    A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. In all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer. © 2008 Canadian Society for Chemical Engineering  

    Preparation, Evaluation and Investigation of NiO-MgO-SiO2 Catalyst Deactivation in Propane Reforming

    , Ph.D. Dissertation Sharif University of Technology Barzegari, Fatemeh (Author) ; Frahadi, Fathollah (Supervisor) ; Kazemeini, Mohammad (Supervisor) ; Rezaei, Mehran (Supervisor) ; Keshavarz, Ahmad Reza (Co-Supervisor)
    Abstract
    Synthesis gas (H2, CO) is widely used in chemical and petrochemical industries, utilized for methanol and ammonia production. Hydrogen is the main component of syngas which is considered as an appropriate alternative for fossil fuels. Catalytic steam reforming is one of the most common and economical pathway for syngas production. Light hydrocarbons such as propane which can easily be transported, stored and distributed, is a promising feed candidate for steam reforming. Catalyst deactivation along with low stability resulting from carbon formation and sintering is one of the main crucial problems in this process, leading to much research on the preparation of stable and coke resistant... 

    Retrofitting a steam power cycle by using water from the interstage feed water pump as reheat spray

    , Article ASME Power Conference 2008, Lake Buena Vista, FL, 22 July 2008 through 24 July 2008 ; July , 2008 , Pages 23-30 ; 9780791848326 (ISBN) Saeedi, M. H ; Irani Rahaghi, A ; Mousavi, M. S ; Power Division, ASME ; Sharif University of Technology
    2008
    Abstract
    Various methods are used in thermal power plants to adjust the superheated or reheated steam temperature to a pre-determined set point, including flue gas recirculation, using tilting burners and spray of water from discharge of feed water pump, etc. In this paper, an innovative method is presented to control the reheater temperature by tapping water from an interstage of the feed water pump to control reheater temperature at the Bisotoun Power Plant (a steam cycle based power plant in the western Iran). The spray water for the superheaters is secured from the discharge of feed water pump, but interstage water, instead of gas recirculation or using tilting burner, is used to control the... 

    Adaptive critic-based neurofuzzy controller for the steam generator water level

    , Article IEEE Transactions on Nuclear Science ; Volume 55, Issue 3 , 2008 , Pages 1678-1685 ; 00189499 (ISSN) Fakhrazari, A ; Boroushaki, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts... 

    Microwave-Assisted Coke Resistance and Mesoporous Ni-Co Catalyst in two Steps for Methane Steam Reforming

    , M.Sc. Thesis Sharif University of Technology Etminan, Azita (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Methane steam reforming (MSR) is an assuring reaction using steam to produce H2 as clean energy over a nickel-based catalyst. We synthesized monometallic NiMgAl2O4 and bimetallic NiCoMgAl2O4 catalysts in a two-step combustion method using urea, glycine, and sucrose, as fuel. BET-BJH, XRD, TGA, TPR, FESEM, and EDX-mapping characterized surface area, porosity, morphology, crystalline structure, and metal-support interaction behavior. The products exhibited well-structured, simple MgAl2O4 spinel and NiO without NiAl2O4, in both specimens. The MSR evaluation tests at 750℃ under atmospheric pressure, CH4: H2O feed ratio of 1:1.6 showed the bimetallic catalyst has the highest conversion (99.30%)... 

    Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system

    , Article International Journal of Hydrogen Energy ; Volume 32, Issue 17 , December , 2007 , Pages 4591-4599 ; 03603199 (ISSN) Bavarsad, P. G ; Sharif University of Technology
    2007
    Abstract
    The aim of this work is to analyze methane-fed internal reforming solid oxide fuel cell-gas turbine (IRSOFC-GT) power generation system based on the first and second law of thermodynamics. Exergy analysis is used to indicate the thermodynamic losses in each unit and to assess the work potentials of the streams of matter and of heat interactions. The system consists of a prereformer, a SOFC stack, a combustor, a turbine, a fuel compressor and air compressor, recuperators and a heat recovery steam generator (HRSG). A parametric study is also performed to evaluate the effect of various parameters such as fuel flow rate, air flow rate, temperature and pressure on system performance. © 2007...