Loading...
Search for: strain-rate
0.01 seconds
Total 200 records

    Finite element martensite ratio derivation of NiTi via measurable criteria of strain rate

    , Article Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009, SMASIS2009, 21 September 2009 through 23 September 2009, Oxnard, CA ; Volume 1 , 2009 , Pages 641-647 ; 9780791848968 (ISBN) Amini, A ; Mehdigholi, H ; Elahinia, M ; Sharif University of Technology
    Abstract
    The shape memory alloys (SMAs) and smart composites have a large use in high and low level industry, while a lot of research is being done in this field. The existence of smart composite structures is because of the advance mechanical benefits of the above materials. This work refers to dynamic and quasi static nonlinear explanation of these materials. After mathematical model consideration on the rate of strain, a model which is about martensite ratio of NiTi has been presented. This work has been done because of the high sensitivity of these materials to strain rate and use of visual and measurable engineering criteria to access other variables. As the martensite ratio is not engineering... 

    A model to predict recrystallization kinetics in hot strip rolling using combined artificial neural network and finite elements

    , Article Journal of Materials Engineering and Performance ; Volume 18, Issue 9 , 2009 , Pages 1209-1217 ; 10599495 (ISSN) Seyed Salehi, M ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    A thermo-mechanical model has been developed to establish a coupled heat conduction and plastic flow analysis in hot-rolling process. This model is capable of predicting temperature, strain, and strain rate distributions during hot rolling as well as the subsequent static recrystallization fraction and grain size changes after hot deformation. Finite element and neural network models are coupled to assess recrystallization kinetics after hot rolling. A new algorithm has been suggested to create differential data sets to train the neural network. The model is then used to predict histories of various deformation variables and recrystallization kinetics in hot rolling of AA5083. Comparison... 

    Nonlinear parameters of shape memory alloys via strain rate

    , Article Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009, SMASIS2009; 21 September 2009 through 23 September 2009 ; Volume 1 , 2009 , Pages 663-671 ; 9780791848968 (ISBN) Amini, A ; Mehdigholi, H ; Elahinia, M ; Sharif University of Technology
    Abstract
    This paper theoretically finds the different parameters of shape memory alloys via strain rate. Finite element formulation for temperature rate, and produced latent heat due to phase transition have been derived. Moreover, the equivalent viscous damp coefficient is provided. In addition, the Devonshire coefficient has been theoretically found by simplifications. This method helps to predict the heat and temperature change in quasi-static and dynamic studies in NiTi. Furthermore, they could be used in high nonlinear and low elastic deflection of NiTi. Then, the nonlinear vibration of smart composite involved with NiTi from any kind and percent of Ni and Ti could be handled by results.... 

    The influence of heat treatment and hot deformation conditions on γ′ precipitate dissolution of Nimonic 115 superalloy

    , Article International Journal of Advanced Manufacturing Technology ; Volume 45, Issue 9-10 , 2009 , Pages 841-850 ; 02683768 (ISSN) Shahriari, D ; Sadeghi, M. H ; Akbarzadeh, A ; Cheraghzadeh, M ; Sharif University of Technology
    Abstract
    In precipitation hardenable materials, it is desirable to determine the precipitate dissolution temperature for homogenizing the microstructure by controlling the size and distribution of the precipitates. In this research, the influence of various heat treatment and hot deformation conditions on the kinetics of γ ′ dissolution and its morphological evolution in Nimonic 115 was studied. In addition, hot deformation behavior of the material was investigated using hot compression experiments at varying temperature (between 1,050°C and 1,175°C) and strain rates (between 0.01 and 1 s-1) up to a true strain of 0.8. The values obtained for the solvus temperature of γ ′ precipitates by two methods... 

    Strain-rate dependent influence of adherend stiffness on fracture load prediction of BGA solder joints

    , Article Engineering Fracture Mechanics ; Volume 186 , 2017 , Pages 119-133 ; 00137944 (ISSN) Nourani, A ; Akbari, S ; Farrahi, G ; Spelt, J. K ; Sharif University of Technology
    Abstract
    Fracture experiments with ball grid array (BGA) specimens having different adherend rigidities were performed under bending loads at intermediate strain rates (0.2–1 s−1) and a high strain rate of 30 s−1. A cohesive zone model (CZM) was established and the predictive capability of the model was assessed for the specimens with different rigidities. The predicted fracture loads were within 12% of the measured forces when the CZM parameters were obtained using specimens with a similar degree of constraint. This suggests that in many practical cases, the effect of adherend stiffness can be neglected in predicting the strength of BGA solder joints. © 2017 Elsevier Ltd  

    Rate-dependent behavior of connective tissue through a micromechanics-based hyper viscoelastic model

    , Article International Journal of Engineering Science ; Volume 121 , 2017 , Pages 91-107 ; 00207225 (ISSN) Fallah, A ; Ahmadian, M. T ; Mohammadi Aghdam, M ; Sharif University of Technology
    Abstract
    In this paper, a micromechanical study on rate-dependent behavior of connective tissues is performed. To this end, a hyper viscoelastic constitutive model consisting a hyperelastic part for modeling equilibrium response of tissues and a viscous part using a hereditary integral is proposed to capture the time-dependent behavior of the tissues. With regard to the hierarchical structure of the tissue, strain energy function are developed for modeling elastic response of the tissue constituents i.e. collagen fibers and ground matrix. The rate-dependency is incorporated into the model using a viscous element with rate-dependent relaxation time. The proposed constitutive model is implemented into... 

    Effect of the strain rate on the intermediate temperature brittleness in Zr-based bulk metallic glasses

    , Article Journal of Non-Crystalline Solids ; Volume 475 , 2017 , Pages 172-178 ; 00223093 (ISSN) Asadi Khanouki, M. T ; Tavakoli, R ; Aashuri, H ; Sharif University of Technology
    Abstract
    In this work, the effect of strain rate on the ductility, intermediate temperature brittleness and fracture surface of Zr-based BMG over a wide range of temperatures from 0.1 Tg to near Tg, has been systematically investigated. The results showed two remarkable ductile to brittle transition at low cryogenic and intermediate temperatures. At low temperatures, below 0.4 Tg, the activation of diffusion mediated phenomena is negligible and the combined effects of strain rate and temperature contribute to the plasticity of material by changing the STZ volume, hence the possibility of forming multiple shear bands. At the temperature range from 0.4 Tg to the temperature at which the intermediate... 

    Non-linear stress response of non-gap-spanning magnetic chains suspended in a newtonian fluid under oscillatory shear test: a direct numerical simulation

    , Article Physics of Fluids ; Volume 29, Issue 10 , 2017 ; 10706631 (ISSN) Hashemi, M. R ; Taghizadeh Manzari, M ; Fatehi, R ; Sharif University of Technology
    Abstract
    Adirect numerical simulation approach is used to investigate the effective non-linear viscoelastic stress response of non-gap-spanning magnetic chains suspended in a Newtonian fluid. The suspension is confined in a channel and the suspended clusters are formed under the influence of a constant external magnetic field. Large amplitude oscillatory shear (LAOS) tests are conducted to study the non-linear rheology of the system. The effect of inertia on the intensity of non-linearities is discussed for both magnetic and non-magnetic cases. By conducting magnetic sweep tests, the intensity and quality of the non-linear stress response are studied as a function of the strength of the external... 

    Constitutive modeling of hardening-relaxation response of asphalt concrete in cyclic compressive loading

    , Article Construction and Building Materials ; Volume 137 , 2017 , Pages 169-184 ; 09500618 (ISSN) Karimi, M. M ; Tabatabaee, N ; Jahangiri, B ; Darabi, M. K ; Sharif University of Technology
    Abstract
    Cyclic loading on asphalt concrete materials with a longer relaxation time and lower remaining stress lead to higher viscoelastic strain recovery. Consequently, more aggregate reorientation occurs and the rate of viscoplastic strain increases in subsequent cycles. The present study proposes a hardening relaxation constitutive relationship (fHR) as a function of accumulated recovered viscoelastic strain εrve based on experimental observation. This model captures the initiation and evolution of hardening-relaxation during the relaxation time and/or stress reduction under cyclic loading. The model was then coupled with viscoelastic, viscoplastic and viscodamage constitutive relationships. The... 

    Mechanical and microstructure properties of deformed Al-Al2O3 nanocomposite at elevated temperature

    , Article Journal of Materials Research ; Volume 32, Issue 6 , 2017 , Pages 1118-1128 ; 08842914 (ISSN) Ezatpour, H. R ; Sajjadi, S. A ; Chaichi, A ; Ebrahimi, G. R ; Sharif University of Technology
    Abstract
    Hot isotherm compression tests were performed in temperature range of 350-500 °C and at strain rates of 0.0005 to 0.5 s-1 for Al6061 alloy reinforced with alumina nanoparticles. Effect of deformation parameters and optimal conditions for hot working this nanocomposite were comprehended thoroughly via hot working data analyses, electron microscopy images, and X-ray diffractograms. The results indicated the severity of hot deformation process and an increase in the activation energy to 320 kJ/mol due to the addition of nanoparticles. Dynamic recovery (DRV) was considered as the individual determinative softening mechanism during hot deformation of this nanocomposite, and no sign of dynamic... 

    Development of equations for strain rate sensitivity of UFG aluminum as a function of strain rate

    , Article International Journal of Plasticity ; Volume 90 , 2017 , Pages 167-176 ; 07496419 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    Strain rate sensitivity (m-value) of ultrafine grain (UFG) AA 1050 and AA 5052 sheets processed by accumulative roll-bonding is investigated versus strain rate by stress relaxation (SR) test at ambient temperature. The results show a weak viscous nature of deformation for AA 5052 specimens as compared to AA 1050 ones. So that much less stress relaxation and negligible strain rate sensitivity are obtained for this material due to dislocation and grain boundary mobility limitation caused by Mg solute atoms. In order to formulate strain rate sensitivity of UFG aluminum as a function of strain rate, three phenomenological and two empirical models are developed and assessed by the experimental... 

    Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite

    , Article Materials Science and Engineering A ; Volume 679 , 2017 , Pages 116-122 ; 09215093 (ISSN) Sazgar, A ; Movahhedy, M. R ; Mahnama, M ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form... 

    Experimental and Theoretical Analysis of Plastic Deformation of Metals under Impact Loading Using Taylor Impact Test

    , M.Sc. Thesis Sharif University of Technology Khayyer Dastjerdi Toroghi, Ahmad (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    In most of the engineering applications, the mechanical behavior of materials in high strain rate deformations differs from their behavior in quasi-static deformations. In some engineering problems like impact loading on structures, metal forming and explosive forming, the range of strain rate is about . Taylor impact test is one of the experiments used for characterizing the dynamic behavior of materials in high strain rate deformations. In the Taylor impact test a rigid cylindrical projectile is impacted normally onto a hard and massive surface (anvil), the projectile deforms by mushrooming at the impact end. With plastic wave propagation analysis, the plastic deformation of projectile is... 

    Experimental and Numerical Study of Pulse Shaper Geometry Effects in Split Hopkinson Pressure Bar Test

    , M.Sc. Thesis Sharif University of Technology Ashrafi Habib Abadi, Mohammad Javad (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Split Hopkinson pressure bar (SHPB) test is one of the tests used for characterizing the mechanical behavior of materials at high strain rates between and s -1. A SHPB test consists of a gas gun, a striker bar, an incident bar, a transmission bar and a specimen which is sandwiched between the incident and transmission bars. In order to achieve constant strain rate during the test which is necessary in SHPB test, the incident pulse should obey the stress-strain curve of the specimen. For shaping the incident pulse usually a thin deformable disk -called pulse shaper- is placed between the striker and incident bars. In this thesis, first we designed, implemented and calibrated the measuring... 

    , M.Sc. Thesis Sharif University of Technology Emami Talaremi, Ali Asghar (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Increasing the application of elastomeric structures in industries has caused an interest in the researchers for nonlinear elasticity and viscoelasticity of solids. Such materials which show large deformation and rate dependent behavior are treated by visco-hyperelastic constitutive equations. Based on visco-hyperelastic constitutive equations, total stress is divided into two parts: quasi-static and viscous stress. The method for determining the visco-hyperelastic constitutive equation is strictly dependent on the chosen rheological model. In this project, a new visco-hyperelasic constitutive equation in the integral form was introduced based on the Zener model. Also, based on the internal... 

    Analytical and Numerical Investigation of Stress Wave Propagation in Split Hopkinson Pressure Bar for Studying Viscoelastic Behavior of Polymers at High Strain Rates

    , M.Sc. Thesis Sharif University of Technology Moghaddam, Fazel (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Abstract
    Studying the behavior of materials at high strain rate is necessary for design and analysis of structures subjected to impact loading. Therefore, design and construction of apparatuses that enable us for testing various materials under impact loading is very important. The split Hopkinson pressure bar test -one of the most important impact tests- is utilized for dynamic loading at constant strain rates ranging from 100 to 10000 1/s.
    In this thesis, first we explain about the behavior of materials at high strain rates and then focus on the behavior of polymers -that are widely used in different industries- under impact loading. Also, basic concepts of polymeric Hopkinson pressure bar and... 

    Constitutive Modeling of Temperature and Strain Rate Dependent Behavior of Rubbers at Finite Deformations with Combined Physicalphenomenological Approach

    , Ph.D. Dissertation Sharif University of Technology Khajehsaeid, Hesam (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor) ; Arghavani, Jamal (Co-Advisor)
    Abstract
    Wide applications of elastomeric (rubber-like) materials have led to significant interest of researchers to these materials. Elastomers as a great category of polymeric materials,posses specific properties such as large elastic deformations and energy absorption which make them suitable for aerospace and automotive applications as well as shock and vibration absorbers.In this thesis, an exponential strain energy function (SEF) has been proposed for elastomers which well reproduces the mechanical behavior of these materials and also the material parameters are related to the physical parameters of the material molecular network. This SEF has been concluded from a relation proposed for the... 

    Effect of Cryogenic SPD with Various Strain Conditions on Development of Nano and Bimodal Structures in Al Alloys

    , Ph.D. Dissertation Sharif University of Technology Mohebbi, Mohammad Sadegh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Amount of strain has been always considered as the primary parameter affecting the microstructural and strength evolutions during Severe Plastic Deformation (SPD). However, these evolutions unavoidably saturate in large strains under deformation with constant conditions, i.e. constant deformation temperature, strain rate and strain path. In this study, effects of these factors on the microstructural and flow behavior of Ultra-Fine Grain (UFG) aluminum (AA 1050 and AA 5052) processed by Accumulative Roll-Bonding (ARB) are investigated. The flow behavior and its time-dependent aspect are evaluated up to large strains by Plane Strain Compression (PSC) and Stress Relaxation (SR) tests. ... 

    Investigation of Texture Effects on the Deformation of Sheet Metals using Crystal Plasticity Theory

    , M.Sc. Thesis Sharif University of Technology Khajeh Salehani, Mohsen (Author) ; Assempour, Ahmad (Supervisor) ; Mehdigholi, Hamid (Co-Advisor)
    Abstract
    The orientations which predominate in a final orientation distribution resulted from a specific deformation mode are the ideal orientations. There is a set of ideal orientations for each of crystal structures under a predefined mode of deformation. Ideal orientations are one of the material characteristics in the applied mode of deformation. The material texture strongly influences its final properties and affects the material behaviour in the subsequent forming processes.
    In this project, final texture of 1010 steel sheet resulted from simple tension mode of deformation is investigated computationally and experimentally. The calculated texture based on the simulation procedure is... 

    Experimental Study of High Strain Rate Effects on Steel Sheet Forming

    , M.Sc. Thesis Sharif University of Technology Sadeghi Chahardeh, Alireza (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    Strain rate dependence of plastic yield and failure properties displayed by most metals affects energies, forces and forming limits involved in high speed forming processes. This paper investigates the influence of the strain rate on the forming properties of some industrial sheet metals used in Automotive and Aerospace industries. First, Split Hopkinson Tensile Bar (SHTB) experiments are carried out to determine the influence of the strain rate on the materials’ stress-strain curves. Then, the SHTB results are used to model the constitutive behaviour of the metal sheets using the phenomenological Johnson-Cook (JC) and Voce models. Finally, forming limit diagrams (FLDs) are calculated using...