Loading...
Search for: strain-rate
0.012 seconds
Total 200 records

    Predicting crack initiation of solder joints with varying sizes under bending

    , Article Journal of Electronic Materials ; 2019 ; 03615235 (ISSN) Mirmehdi, S ; Farrahi, G. H ; Nourani, A ; Soroosh, F ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The critical strain energy release rate for crack initiation, J ci , was measured under mode I loading for SAC305 solder joints between two copper substrates. Fracture tests were performed using double cantilever beam specimens at a strain rate of 0.03 s −1 . Different bond-line widths (i.e., joint size in the out-of-plane dimension) and thicknesses, were examined. The fracture force per unit width and J ci (the average value of four J-integral contours encircling the crack tip) were relatively insensitive to the width of the joint ranging from 8 mm to 21 mm. Variations in bond-line thickness (i.e., 150 μm, 250 μm and 450 μm) also had an insignificant influence on the fracture energy of... 

    Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels

    , Article Mechanics Based Design of Structures and Machines ; 2019 ; 15397734 (ISSN) Alipour, M ; Torabi, M. A ; Sareban, M ; Lashini, H ; Sadeghi, E ; Fazaeli, A ; Habibi, M ; Hashemi, R ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element... 

    Predicting crack initiation of solder joints with varying sizes under bending

    , Article Journal of Electronic Materials ; 2019 ; 03615235 (ISSN) Mirmehdi, S ; Farrahi, G. H ; Nourani, A ; Soroosh, F ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    The critical strain energy release rate for crack initiation, J ci , was measured under mode I loading for SAC305 solder joints between two copper substrates. Fracture tests were performed using double cantilever beam specimens at a strain rate of 0.03 s −1 . Different bond-line widths (i.e., joint size in the out-of-plane dimension) and thicknesses, were examined. The fracture force per unit width and J ci (the average value of four J-integral contours encircling the crack tip) were relatively insensitive to the width of the joint ranging from 8 mm to 21 mm. Variations in bond-line thickness (i.e., 150 μm, 250 μm and 450 μm) also had an insignificant influence on the fracture energy of... 

    Predicting delamination in multilayer composite circuit boards with bonded microelectronic components

    , Article Engineering Fracture Mechanics ; Volume 187 , 2018 , Pages 225-240 ; 00137944 (ISSN) Akbari, S ; Nourani, A ; Spelt, J. K ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present work developed a mixed-mode cohesive zone model (CZM) with a mode I failure criterion to predict the delamination bending loads of multilayer, composite printed circuit boards (PCBs) assembled with soldered ball grid array (BGA) components that were reinforced with an underfill epoxy adhesive. Two different delamination modes were observed in these microelectronic assemblies: delamination at the interface between the solder mask and the first conducting layer of the PCB, and PCB subsurface delamination at the interface between the epoxy and glass fibers of one of the prepreg layers. The cohesive parameters for each of the two crack paths were obtained from fracture tests of... 

    Biomechanical simulation of eye-airbag impacts during vehicle accidents

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 232, Issue 7 , 2018 , Pages 699-707 ; 09544119 (ISSN) Shirzadi, H ; Zohoor, H ; Naserkhaki, S ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Airbags are safety devices in vehicles effectively suppressing passengers’ injuries during accidents. Although there are still many cases of eye injuries reported due to eye-airbag impacts in recent years. Biomechanical approaches are now feasible and can considerably help experts to investigate the issue without ethical concerns. The eye-airbag impact–induced stresses/strains in various components of the eye were found to investigate the risk of injury in different conditions (impact velocity and airbag pressure). Three-dimensional geometry of the eyeball, fat and bony socket as well as the airbag were developed and meshed to develop a finite element model. Nonlinear material properties of... 

    Constitutive equation and FEM analysis of incremental cryo-rolling of UFG AA 1050 and AA 5052

    , Article Journal of Materials Processing Technology ; Volume 255 , 2018 , Pages 35-46 ; 09240136 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, ultrafine grained aluminum sheets AA1050 and AA5052 are incrementally cryo-rolled after precooling in liquid nitrogen. Cryogenic deformation is considered as an effective approach to postpone saturation of the grain refinement by conventional severe plastic deformation. However, for a quantitative understanding of the resulted microstructure and mechanical properties, accurate values of the deformation parameters (strain, strain rate and temperature) are needed. The aim of this study is, therefore, to find values of the applied cryo-rolling parameters. As the experimental measurements of parameters such as temperature are infeasible in the thin specimens, a FEM simulation is... 

    Mechanical behaviour of A-III steel rebars under monotonic loadings at seismic strain rates

    , Article Magazine of Concrete Research ; Volume 70, Issue 1 , 2018 , Pages 42-54 ; 00249831 (ISSN) Khonsari, S. V ; Shabani, A ; England, G. L ; Shahsavar Gargari, M ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    As the reinforcing bars used in concrete structures located in earthquake-prone areas experience strain rates higher than normal quasi-static ones, it is necessary to have a comprehensive understanding of the behaviour of such materials under these rates of loading. In this work, in order to study the behaviour of grade A-III reinforcing-bar steel (based on the GOST standard, a set of technical standards maintained by the Euro-Asian Council for Standardization, Metrology and Certification), a number of monotonic tests on its tensile and compressive strength on (short and long) specimens at various strain rates, 0·002, 0·01, 0·02 and 0·04 s-1, experienced during earthquakes, were carried out.... 

    Predicting fracture of solder joints with different constraint factors

    , Article Fatigue and Fracture of Engineering Materials and Structures ; 2018 ; 8756758X (ISSN) Nourani, A ; Mirmehdi, S ; Farrahi, G. H ; Soroush, F ; Sharif University of Technology
    Blackwell Publishing Ltd  2018
    Abstract
    Double cantilever beam (DCB) specimens of 2.5-mm-long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second−1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress... 

    Micromechanical modeling of rate-dependent behavior of Connective tissues

    , Article Journal of Theoretical Biology ; Volume 416 , 2017 , Pages 119-128 ; 00225193 (ISSN) Fallah, A ; Ahmadian, M. T ; Firozbakhsh, K ; Aghdam, M. M ; Sharif University of Technology
    Academic Press  2017
    Abstract
    In this paper, a constitutive and micromechanical model for prediction of rate-dependent behavior of connective tissues (CTs) is presented. Connective tissues are considered as nonlinear viscoelastic material. The rate-dependent behavior of CTs is incorporated into model using the well-known quasi-linear viscoelasticity (QLV) theory. A planar wavy representative volume element (RVE) is considered based on the tissue microstructure histological evidences. The presented model parameters are identified based on the available experiments in the literature. The presented constitutive model introduced to ABAQUS by means of UMAT subroutine. Results show that, monotonic uniaxial test predictions of... 

    Deformation behavior of severely deformed al and related mechanisms through warm tensile test

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 3 , 2017 , Pages 1311-1324 ; 10599495 (ISSN) Charkhesht, V ; Kazeminezhad, M ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Flow stress and ductility behaviors of the annealed and severely deformed Al were investigated at warm deformation temperatures. Constrained groove pressing (CGP) method as a severe plastic deformation process was used. The tensile test was carried out at the temperature range of the 298-573 K and strain rate range of 0.001-0.1 s−1 to present the elevated temperature deformation behavior utilizing hyperbolic sine constitutive equation. The flow stress of the CGPed sample is increased with the number of CGP passes and decreased with temperature. Dynamic recovery and strain softening are found as main restoration mechanisms. Flow stress amounts are not remarkably affected by the strain rate.... 

    A study on deformation behavior of 304L stainless steel during and after plate rolling at elevated temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 2 , 2017 , Pages 885-893 ; 10599495 (ISSN) Pourabdollah, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this work, microstructural evolutions and mechanical properties of AISI 304L stainless steel were studied after rolling operations at elevated temperatures. Rolling experiments were conducted under warm and hot rolling conditions in the range of 600-1000 °C employing different reductions. Then, the developed microstructures and the mechanical properties of the steel were evaluated by means of uniaxial tensile testing, metallographic observations, and x-ray diffraction method. Besides, two-dimensional finite element analysis coupled with artificial neural network modeling was developed to assess thermo-mechanical behavior of the steel during and after rolling. The results show that... 

    Predicting delamination in multilayer composite circuit boards with bonded microelectronic components

    , Article Engineering Fracture Mechanics ; 2017 ; 00137944 (ISSN) Akbari, S ; Nourani, A ; Spelt, J. K ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present work developed a mixed-mode cohesive zone model (CZM) with a mode I failure criterion to predict the delamination bending loads of multilayer, composite printed circuit boards (PCBs) assembled with soldered ball grid array (BGA) components that were reinforced with an underfill epoxy adhesive. Two different delamination modes were observed in these microelectronic assemblies: delamination at the interface between the solder mask and the first conducting layer of the PCB, and PCB subsurface delamination at the interface between the epoxy and glass fibers of one of the prepreg layers. The cohesive parameters for each of the two crack paths were obtained from fracture tests of... 

    Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split hopkinson pressure bar apparatus

    , Article Construction and Building Materials ; Volume 125 , 2016 , Pages 326-336 ; 09500618 (ISSN) Bagher Shemirani, A ; Naghdabadi, R ; Ashrafi, M. J ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Dynamic behavior of concrete specimens is investigated experimentally and numerically by split Hopkinson pressure bar (SHPB) tests. In order to accurately determine dynamic properties of brittle materials such as concrete, specimens should be subjected to particular pulse loading that can be generated by using pulse shapers. Choosing proper pulse shaper dimensions helps to obtain dynamic stress equilibrium, achieve constant strain rate and minimize pulse oscillation in the concrete specimens. To this end, SHPB tests are performed for concrete specimens and effective parameters on shaping pulses such as striker bar velocity, diameter and thickness of the pulse shaper are studied... 

    Modeling of the mutual effect of dynamic precipitation and dislocation density in age hardenable aluminum alloys

    , Article Journal of Alloys and Compounds ; Volume 683 , 2016 , Pages 527-532 ; 09258388 (ISSN) Khani Moghanaki, S ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    A model has been proposed to capture the complex strain rate effect on dynamic precipitation of GP zones in an age-hardenable aluminum alloy. The contributions of vacancies and dislocations to dynamically formed GP zones have been specified in the model. It has been demonstrated that the proposed model is capable for predicting the contribution of each dynamic precipitation mechanisms, accurately, which are acting during deformation. Furthermore, the vacancy and dislocation evolutions during deformation have been considered in this modeling. The effect of strain rate by considering different mechanisms of dynamic precipitation of GP zones has been studied and confirmed by experimental data... 

    Study on the dynamic and static softening phenomena in Al-6Mg alloy during two-stage deformation through interrupted hot compression test

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 77 , 2016 , Pages 50-53 ; 02632241 (ISSN) Pouraliakbar, H ; Pakbaz, M ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Sharif University of Technology
    Elsevier, B. V  2016
    Abstract
    The dynamic and static softening phenomena in Al-6Mg alloy were studied through interrupted two-stage hot compression test performed isothermally at 480°C and strain rate range of 0.001-0.1 s-1. The interruptions of 29 and 90 s were considered when the true strain reached 0.5. It was concluded that the effect of static softening on the flow stress was not highlighted by extending the interruption at a constant strain rate. Also, it was exhibited that softening rate highly enhanced with the strain rate decrement at a constant time. Moreover, the static and dynamic recrystallization was revealed as the dominant softening mechanisms at low and high strain rates, respectively  

    Parametric study of strain rate effects on nanoparticle-reinforced polymer composites

    , Article Journal of Nanomaterials ; Volume 2016 , 2016 ; 16874110 (ISSN) Soltannia, B ; Haji Gholami, I ; Masajedian, S ; Mertiny, P ; Sameoto, D ; Taheri, F ; Sharif University of Technology
    Hindawi Publishing Corporation  2016
    Abstract
    Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP) components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures.... 

    Novel printed body worn sensor for measuring the human movement orientation

    , Article Sensor Review ; Volume 36, Issue 3 , 2016 , Pages 321-331 ; 02602288 (ISSN) Mokhlespour Esfahani, M. I ; Taghinedjad, S ; Mottaghitalab, V ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    Emerald Group Publishing Ltd  2016
    Abstract
    Purpose - the purpose of this study is the measuring of the human movement using printed wearable sensor. Human movement measurement is one of the usages for wearable sensors. This technology assists the researchers to collect data from the daily activities of individuals. In other words, the kinematics data of human motion will be extracted from this data and implemented in biomechanical aspects. Design/methodology/approach - This study presents an innovative printed wearable sensor which can be used for measuring human movement orientations. In this paper, the manufacturing process, implementation, measurement setup and calibration procedure of this new sensor will be explained, and the... 

    Static strain aging behavior of a manganese-silicon steel after single and multi-stage straining

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 3 , 2016 , Pages 1047-1055 ; 10599495 (ISSN) Seraj, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this work, static strain aging behavior of an alloy steel containing high amounts of silicon and manganese was examined while the influences of initial microstructure and pre-strain on the aging kinetics were evaluated as well. The rate of strain aging in a low carbon steel was also determined and compared with that occurred in the alloy steel. The rates of static strain aging in the steels were defined at room temperature and at 95 °C by means of double-hit tensile testing and hardness measurements. In addition, three-stage aging experiments at 80 °C were carried out to estimate aging behavior under multi-pass deformation processing. The results showed that in-solution manganese and... 

    A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 3 , 2016 , Pages 1076-1084 ; 10599495 (ISSN) Asgharzadeh, A ; Jamshidi Aval, H ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    Flow stress behavior of AA5086 was determined using tensile testing at different temperatures from room temperature to 500 °C and strain rates varying between 0.002 and 1 s−1. The strain rate sensitivity parameter and occurrence of dynamic strain aging were then investigated in which an Arrhenius-type model was employed to study the serrated flow. Additionally, hot deformation behavior at temperatures higher than 320 °C was evaluated utilizing hyperbolic-sine constitutive equation. Finally, a feed forward artificial neural network model with back propagation learning algorithm was proposed to predict flow stress for all deformation conditions. The results demonstrated that the strain rate... 

    A processing map for hot deformation of an ultrafine-grained aluminum-magnesium-silicon alloy prepared by mechanical milling and hot extrusion

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 46, Issue 12 , December , 2015 , pp 5900–5908 ; 10735623 (ISSN) Asgharzadeh, H ; Rahbar Niazi, M ; Simchi, A ; Sharif University of Technology
    Springer Boston  2015
    Abstract
    Uniaxial compression test at different temperatures [573 K to 723 K (300 °C to 450 °C)] and strain rates (0.01 to 1 s−1) was employed to study the hot deformation behavior of an ultrafine-grained (UFG) Al6063 alloy prepared by the powder metallurgy route. The UFG alloy with an average grain size of ~0.3 µm was prepared by mechanical milling of a gas-atomized aluminum alloy powder for 20 hours followed by hot powder extrusion at 723 K (450 °C). To elaborate the effect of grain size, the aluminum alloy powder was extruded without mechanical milling to attain a coarse-grained (CG) structure with an average grain size of about 2.2 µm. By employing the dynamic materials model, processing maps for...