Loading...
Search for: strain-rate
0.017 seconds
Total 200 records

    A molecular dynamics study of bond strength and interface conditions in the Al / Al 2 O 3 metal-ceramic composites

    , Article Computational Materials Science ; Volume 109 , November , 2015 , Pages 200-208 ; 09270256 (ISSN) Sazgar, A ; Movahhedy, M. R ; Mahnama, M ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract High ductility of metals as well as high strength of ceramics has made the metal/ceramic composites an attractive material for many applications requiring high strength to weight ratios. An important issue in using this material is the behavior of the material and its ceramic-metal interface under various loading, especially at high strain rate. To provide a better understanding of the interface conditions, in this work, a molecular dynamics study of the interface behavior in Al/α-Al2O3 composite as the result of tensile and shear loadings is presented. For this purpose, the reactive force field (ReaxFF) potential function is utilized. The effects of... 

    Deformation mode dependency of stable orientations: From plane strain compression to equibiaxial tension

    , Article Philosophical Magazine ; Volume 95, Issue 7 , Feb , 2015 , Pages 794-803 ; 14786435 (ISSN) Hajian, M ; Khajeh Salehani, M ; Assempour, A ; Mehdigholi, H ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Prediction of stable orientations is a key subject in the crystal plasticity literature. This work deals with the effects of deformation mode on the resulted stable orientations and texture evolution of FCC materials. The simulations are based on the numerical procedure developed by the authors in previous works in which, a rate-sensitive crystal plasticity model with Secant hardening law was employed. The resulting non-linear system of equations is solved by the modified Newton-Raphson method. In order to obtain the stable orientations for a deformation mode, initial orientations evenly spaced in the Euler space are selected and their evolution into the stable orientations is tracked. The... 

    Deformation behavior of AA2017-SiCp in warm and hot deformation regions

    , Article Materials and Design ; Volume 67 , February , 2015 , Pages 318-323 ; 02613069 (ISSN) Serajzadeh, S ; Ranjbar Motlagh, S ; Mirbagheri, S. M. H ; Akhgar, J. M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this work, the flow stress behavior of a metal matrix composite AA2017-10% SiCp was studied by means of the uni-axial compression test. The composite was first produced by stir casting technique and then, hot extrusion with the ratio of 18:1 was carried out to achieve a microstructure with a homogeneous distribution of SiC particles. In the next stage, the isothermal compression tests were conducted on the cylindrical specimens up to the true strain of 0.6. The experiments were performed at temperatures between room temperature to 400°C and strain rates of 0.003, 0.03 and 0.3s-1. Negative strain rate sensitivity was observed in the temperatures less than 250°C indicating the occurrence of... 

    X-FEM modeling of dynamic ductile fracture problems with a nonlocal damage-viscoplasticity model

    , Article Finite Elements in Analysis and Design ; Volume 99 , July , 2015 , Pages 50-67 ; 0168874X (ISSN) Broumand, P ; Khoei, A. R ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this paper, the dynamic large deformation X-FEM method is presented for modeling the full process of dynamic ductile fracture based on a nonlocal damage visco-plasticity model. The effect of inertia is modeled using an explicit central difference scheme which is enhanced through the use of mass lumping, reduced integration with hourglass control, and numerical damping. The material nonlinearity and the flow stress dependency on strain rate, hardening and temperature are modeled with the Johnson-Cook visco-plastic model. The micro-void nucleation, growth and coalescence are modeled macroscopically with an isotropic damage model. The localization phenomenon due to the damage and thermal... 

    Study of synergistic toughening in a bimodal epoxy nanocomposite

    , Article Journal of Reinforced Plastics and Composites ; Volume 34, Issue 4 , February , 2015 , Pages 281-292 ; 07316844 (ISSN) Keivani, M ; Khamesinia, A ; Bagheri, R ; Kouchakzadeh, M. A ; Abadyan, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Toughening of epoxy with different types of modifiers produces a bimodal blend that might show better fracture resistance in comparison with single-modified ones. In this research, bimodal epoxy formulations including mixtures of glass microsphere and silica nanoparticles are explored for possible synergistic toughening. The influence of composition on the glass transition temperature (Tg), tensile characteristics, and fracture toughness (KIC) is investigated. Interestingly, a synergism in fracture toughness is observed when mixtures of modifiers were incorporated. For the fixed overall modifier content, KIC is higher when the volume fraction of glass microsphere is lesser than the volume... 

    Constitutive modeling of elastic-visco-plastic behaviors in aluminum alloys subjected to cyclic loadings at various strain rates

    , Article Journal of Strain Analysis for Engineering Design ; Volume 50, Issue 2 , December , 2015 , Pages 103-124 ; 03093247 (ISSN) Felfeli, M ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, simulations of the stress-strain behavior in aluminum alloys were investigated under cyclic loadings at various strain rates. Four plasticity approaches were applied to simulate cyclic behaviors. To validate obtained results, strain-controlled tensile-compressive fatigue tests were performed in the low cycle fatigue regime. Isothermal fatigue experiments were conducted at various strain rates. Thermo-mechanical fatigue experiments were carried out at different rates of cooling and heating processes. Numerical results demonstrated a good agreement with experimental data at the mid-life cycle of the material. Material constants for different models were also presented for... 

    Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy

    , Article Materials Science and Engineering A ; Volume 585 , 2013 , Pages 165-173 ; 09215093 (ISSN) Anjabin, N ; Karimi Taheri, A ; Kim, H. S ; Sharif University of Technology
    2013
    Abstract
    In this paper, dynamic strain aging (DSA) behavior in a temperature range of (25-235°C) and strain rate range of (10-4-5×10-2s-1) was investigated using a supersaturated age hardenable aluminum alloy. It was found that two mechanisms consisted of pinning of solute atoms to mobile dislocations and dynamic precipitation, were responsible for DSA in the testing conditions. The effects of both mechanisms on the macroscopic flow curve were studied using experimental and improved physically based material modeling approaches. It was shown that both phenomena lead to a negative strain rate hardening in the alloy. Dynamic precipitation acting at high temperature results in considerable work... 

    Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties

    , Article International Journal of Pressure Vessels and Piping ; Volume 111-112 , 2013 , Pages 63-74 ; 03080161 (ISSN) Hosseini Kordkheili, S. A ; Livani, M ; Sharif University of Technology
    2013
    Abstract
    A semi-analytical solution for rotating axisymmetric disks made of functionally graded materials was previously proposed by Hosseini Kordkheili and Naghdabadi [1]. In the present work the solution is employed to study thermoelastic creep behavior of the functionally graded rotating disks with variable thickness in to the time domain. The rate type governing differential equations for the considered structure are derived and analytically solved in terms of rate of strain as a reduced to a set of linear algebraic equations. The advantage of this method is to avoid simplifications and restrictions which are normally associated with other creep solution techniques in the literature. The thermal... 

    Constitutive modeling of hot deformation behavior of the AA6063 alloy with different precipitates

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 44, Issue 13 , December , 2013 , Pages 5853-5860 ; 10735623 (ISSN) Anjabin, N ; Taheri, A. K ; Kim, H. S ; Sharif University of Technology
    2013
    Abstract
    The current study proposes a simple constitutive model that integrates the kinetics of precipitation during static aging and the kinetics of precipitate dissolution during preheating to deformation temperature to predict the hot flow behavior of AA6063 alloy. The model relates the flow behavior of the age-hardenable alloy to the alloy chemistry, thermal history as well as deformation temperature, strain, and strain rate by means of a physically based model. Different aging conditions, including supersaturated solid solution and overaging conditions with different deformation parameters, were assessed. Each part of the model was in good agreement with those of experimental and other model... 

    On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy

    , Article Journal of Alloys and Compounds ; Volume 564 , 2013 , Pages 13-19 ; 09258388 (ISSN) Dehghan, H ; Abbasi, S. M ; Momeni, A ; Karimi Taheri, A ; Sharif University of Technology
    2013
    Abstract
    The hot working behavior of A286 was studied using hot compression tests over temperature range of 950-1100 °C and at strain rates of 0.001-1 s -1. The flow curves of the material over the studied temperatures and strain rates were typical of dynamic recrystallization. However, some points reflected a change in the mechanism of softening with the change of strain rate. The relation between flow stress, deformation temperature and strain rate was examined via power-law, hyperbolic sine and exponential constitutive equations and the hyperbolic sine function was found more appropriate. The peak strain increased with strain rate up to 0.01 s-1 and then unexpectedly decreased at higher strain... 

    The effect of the imposed boundary rate on the formability of strain rate sensitive sheets using the M-K Method

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 9 , April , 2013 , Pages 2522-2527 ; 10599495 (ISSN) Hashemi, R ; Ghazanfari, A ; Abrinia, K ; Assempour, A ; Sharif University of Technology
    2013
    Abstract
    In spite of the fact that the experimental results indicate the significant effect of strain rate on forming limits of sheets, this effect is neglected in all theoretical methods of prediction of Forming Limit Diagrams (FLDs). The purpose of this paper is to modify the most renowned theoretical method of determination of FLDs (e.g., M-K model) so as to enable it to take into account the effect of strain rate. To achieve this aim, the traditional assumption of preexistence of an initial geometrical inhomogeneity in the sheet has been replaced with the assumption of a preexisting "material" inhomogeneity. It has been shown that using this assumption, the strain rate would not be omitted from... 

    A study on non-isothermal static recrystallization during hot rolling of carbon steels

    , Article Materials and Manufacturing Processes ; Volume 28, Issue 3 , 2013 , Pages 236-241 ; 10426914 (ISSN) Meshkat, M ; Serajzadeh, S ; Sharif University of Technology
    2013
    Abstract
    In this article, the effects of hot rolling parameters on static recrystallization, mechanical properties, and final microstructures of a low carbon steel have been investigated. A numerical analysis was first employed to determine distributions of temperature, strain, and strain rate during hot rolling and then the predicted results were combined with the additivity rule together with Avrami equation to evaluate the progress of non-isothermal static recrystallization after hot rolling. In the next stage, hot rolling experiments have been performed under different rolling conditions to assess the effects of rolling layout on microstructures and mechanical properties of the rolled steel. The... 

    Dislocation density and flow stress modeling of nanostructured Al-SiC p composite during accumulative roll bonding

    , Article Computational Materials Science ; Volume 67 , February , 2013 , Pages 359-363 ; 09270256 (ISSN) Kavosi, J ; Saei, M ; Kazeminezhad, M ; Sharif University of Technology
    2013
    Abstract
    In order to investigate the dislocation structure and flow stress evolution of Al-SiCp composite during ARB process, a comprehensive model which describes the evolution of dislocation density is needed. Dislocation density, microstructure and flow stress evolution of Al-SiCp composite are predicted considering the ETMB model, strain and strain rate achieved from the mechanical model of ARB process and shear modulus calculated from the composite model. In addition, models' parameters such as dislocation generation parameters are modified due to the effect of SiC particles. The predicted results are in good agreement with experimental data  

    Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings

    , Article International Journal of Fatigue ; Volume 47 , 2013 , Pages 148-153 ; 01421123 (ISSN) Azadi, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, effects of strain rate and mean strain on the cyclic behavior and the lifetime of aluminum-silicon alloys are investigated under thermo-mechanical and isothermal fatigue loadings. To achieve these goals, low cycle fatigue tests are accomplished at evaluated temperatures under various strain rates (by changing the loading frequency) and different strain ratios (minimum to maximum strain). Thermo-mechanical fatigue experiments are performed in an out-of-phase condition where the temperature varies between 50 and 250 °C. Various heating/cooling rates are taken into account to assess the strain rate effect and different starting temperatures are considered to study the mean strain... 

    An energy-based approach for analysis of dynamic plastic deformation of metals

    , Article International Journal of Mechanical Sciences ; Volume 66 , January , 2013 , Pages 94-100 ; 00207403 (ISSN) Khayer Dastjerdi, A ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    2013
    Abstract
    An energy-based ordinary differential equation is derived for a plastic wave propagating through a Taylor impact test specimen. Using the definition of true strain, an analytical equation is presented to calculate the strain rate across the plastic wave front. Having considered a Johnson-Cook plasticity model for the projectile material, the derived energy equation accompanied by a governing kinematics relation and the strain rate equation is numerically integrated to obtain the final deformed profile of the specimen. The results of the energy based model are then compared with those of the commonly used momentum-based approach as well as the existing experimental data in literature for... 

    Evaluation of the effect of anisotropic consolidation and principle stress rotation on undrained behavior of silty sands

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1637-1653 ; 10263098 (ISSN) Keyhani, R ; Haeri, S. M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    The dependence of undrained behavior of silty sand on initial state of stress and direction of principal stresses with respect to vertical (ff) is assessed under generalized loading paths using hollow cylinder apparatus. During applying shear load, value of intermediate principal stress parameter (b) is held constant and ff value is increased from zero to the aimed value and held constant. Specimens are consolidated, both, isotropically and anisotropically to evaluate the effect anisotropic consolidation on the behavior of these soils. The wet tamping method was selected to prepare specimen. Shear loading was carried out under strain-controlled condition to capture post-peak strain-softening... 

    The use of ANN to predict the hot deformation behavior of AA7075 at low strain rates

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 3 , 2013 , Pages 903-910 ; 10599495 (ISSN) Jenab, A ; Karimi Taheri, A ; Jenab, K ; Sharif University of Technology
    2013
    Abstract
    In this study, artificial neural network (ANN) was used to model the hot deformation behavior of 7075 aluminum alloy during compression test, in the strain rate range of 0.0003-1 s-1 and temperature range of 200-450 C. The inputs of the model were temperature, strain rate, and strain, while the output of the model was the flow stress. The feed-forward back-propagation network with two hidden layers was built and successfully trained at different deformation domains by Levenberg-Marquardt training algorithm. Comparative analysis of the results obtained from the hyperbolic sine, the power law constitutive equations, and the ANN shows that the newly developed ANN model has a better performance... 

    Analyses on the flow stress of an Al-Mg alloy during dynamic recovery

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 3 , March , 2013 , Pages 700-705 ; 10599495 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    2013
    Abstract
    A comprehensive analysis on flow stress of a wrought Al-Mg alloy is performed to examine the effect of strain. For this study, hot compression tests were carried at different temperatures and strain rates. Corrections of friction and adiabatic heating effects lead to the true stress-true strain curves in the form of dynamic recovery, which reach to a steady-state condition. After correction, constitutive analysis at a constant strain is carried out using hyperbolic-sine equation. The effect of strain on each constitutive parameter is studied to derive a strain-dependent constitutive equation based on hyperbolic-sine equation. Some of constitutive parameters reach to the constant values at... 

    Investigating the effect of rolling strain on fracture behavior of roll bonded Al6061 laminates under quasi-static and dynamic loading

    , Article Materials Science and Engineering A ; Volume 558 , 2012 , Pages 82-89 ; 09215093 (ISSN) Hosseini Monazzah, A ; Bagheri, R ; Seyed Reihani, S. M ; Sharif University of Technology
    2012
    Abstract
    Damage tolerance improvement has been reported by laminating aluminum alloys and composites by researchers. Three-layer laminates comprising Al6061 outer layers and Al1050 interlayer have been roll bonded in this research. While most of the works done have focused on fracture properties of roll bonded Al laminates in crack arrester geometry, this study explores their behavior in crack divider configuration. Rolling strain is varied to control the interfacial bonding in laminates. The fracture behavior of laminates and the constituent material was examined via three-point bending and impact tests. This study presents significant improvement in damage tolerance of laminates compared to their... 

    A critical assessment of forming limit prediction models and beneficial modifications to them

    , Article SAE Technical Papers ; 2012 Ghazanfari, A ; Assempour, A ; Sharif University of Technology
    SAE  2012
    Abstract
    Major forming limit prediction models and calibration methods are reviewed briefly and their advantages and disadvantages are discussed. Two modified Marciniak-Kuczynski (M-K) models and one modified NADDRG (Keeler-Brazier) model are also presented which have some advantages over conventional models. In the first modified M-K model, material non-homogeneity has been substituted for geometrical non-homogeneity to reduce the sensitivity of the traditional model to variations of the initial non-homogeneity. Using this important advantage, a semi-empirical relation is proposed to predict the value of the initial material non-homogeneity. In the second modified M-K model, the conventional...