Loading...
Search for: stress-analysis
0.007 seconds
Total 172 records

    Interlaminar hygrothermal stresses in laminated plates

    , Article International Journal of Solids and Structures ; Volume 44, Issue 25-26 , 2007 , Pages 8119-8142 ; 00207683 (ISSN) Bahrami, A ; Nosier, A ; Sharif University of Technology
    2007
    Abstract
    Within the elasticity formulation the most general displacement field for hygrothermal problems of long laminated composite plates is presented. The equivalent single-layer theories are then employed to determine the global deformation parameters appearing in the displacement fields of general cross-ply, symmetric, and antisymmetric angle-ply laminates under thermal and hygroscopic loadings. Reddy's layerwise theory is subsequently used to determine the local deformation parameters of various displacement fields. An elasticity solution is also developed in order to validate the efficiency and accuracy of the layerwise theory in predicting the interlaminar normal and shear stress... 

    Effect of boundary conditions on dynamic behaviour of bridges

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 169, Issue 2 , 2016 , Pages 121-140 ; 09650911 (ISSN) Samanipour, K ; Vafai, H ; Sharif University of Technology
    Thomas Telford Services Ltd 
    Abstract
    A moving vehicle, owing to its vibration and mass inertia, has significant effects on the dynamic response of structures. Most bridge codes define a factor called the dynamic load allowance, which is applied to the maximum static moment under static loading due to traffic load. This paper presents how to model an actual truck on bridges and how the maximum dynamic stresses of bridges change during the passage of moving vehicles. Furthermore, an algorithm to solve the governing equation of the bridge simultaneous with the equations of motion of an actual European truck is presented. Subsequently, 32 dynamic analyses of different bridges with different spans, road profiles and boundary... 

    Three-dimensional stress analysis of structures in instability conditions using nonlinear displacement-based and hybrid-mixed quadrilaterals based on SaS formulation

    , Article International Journal of Non-Linear Mechanics ; Volume 126 , 2020 Bohlooly, M ; Kulikov, G. M ; Plotnikova, S. V ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, the three-dimensional (3D) stress analysis of plate-type structures in instability conditions is presented. The displacement-based and hybrid-mixed four-node quadrilateral elements are developed taking the advantages of the sampling surfaces (SaS) method. The SaS formulation is based on considering inside the plate N not equally spaced SaS parallel to the middle surface to specify the displacements of these surfaces as primary plate unknowns. The displacements, strains and stresses are assumed to be distributed through the thickness using Lagrange polynomials of degree N–1 that lead to a well-set higher-order plate theory. The locations of SaS are based on the use of Chebyshev... 

    Nonlinear displacement-based and hybrid-mixed quadrilaterals for three-dimensional stress analysis through sampling surfaces formulation

    , Article Thin-Walled Structures ; Volume 155 , October , 2020 Kulikov, G. M ; Bohlooly, M ; Plotnikova, S. V ; Kouchakzadeh, M. A ; Glebov, A. O
    Elsevier Ltd  2020
    Abstract
    The finite deformation displacement-based and hybrid-mixed four-node quadrilateral elements using the sampling surfaces (SaS) technique are developed. The SaS formulation is based on choosing inside the plate N not equally spaced SaS parallel to the middle surface to introduce the displacements of these surfaces as basic plate unknowns. Such choice of unknowns with the consequent use of Lagrange polynomials of degree N–1 in the thickness direction permits the presentation of the plate formulation in a very compact form. The SaS are located at only Chebyshev polynomial nodes that allows one to minimize uniformly the error due to the Lagrange interpolation. To circumvent shear locking and have... 

    Simulation of Thermal Barrier Coatings under Thermo-Mechanical and Low Cycle Fatigue Loadings

    , M.Sc. Thesis Sharif University of Technology Rezvani Rad, Milad (Author) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    The main purpose in this thesis is the finite element simulation of thermal barrier coatings (TBC), subjected to residual stresses due to the coating process followed by thermo-mechanical fatigue loadings. This finite element modeling is performed in the ABAQUS software. In order to consider the actual condition of thermal barrier coating, models are defined based on a SEM image including real roughness and porosity of coating layers using image processing technique.
    Two-step residual stress taking into account both coating process of bond coat and top coat layer is performed. Pre- heating of substrate and bond coat in order to reach comperessive stresses in coating layers has been... 

    Investigating the Influence of a Silty Layer on the Liquefaction of Saturated Sandy Soils through Numerical Methods

    , M.Sc. Thesis Sharif University of Technology Moghaddam Ranjbaran, Babak (Author) ; Pak, Ali (Supervisor)
    Abstract
    One of the main geotechnical phenomena that causes severe damage during earthquake is liquefaction. This incident occurs due to the undrained behavior of loose sandy soils. In this occurrence, the interaction between the solid and liquid phases in a cyclic motion leads to an increase in pore water pressure and a decrease in interactive forces (effective forces) between grains in the solid grains. Therefore, shear strength decreases. Different aspects of the aforementioned phenomenon is investigated, namely, field, laboratory, and numerical; nevertheless, the study is largely focused on the numerical modelling. Most studies in this field are carried out on a one-layer saturated sand. However,... 

    Introduction to Developing, Modification, and Customization of the Guidelines for Replacement of Metal Patch Repairs with the Composite Patches

    , M.Sc. Thesis Sharif University of Technology Davoodi Moallem, Misam (Author) ; Abedian, Ali (Supervisor)
    Abstract
    The phenomenon of aging causes a great deal of damage to the airborne structures for which there is a specific maintenance instruction, or if an unexpected damage occurs in specific area of a structure, this damage must be repaired and a special repair process must be designed for it. However, due to the diversity of damages and also variations of the implemented loads, the load is transferred to other structural elements, hence, it is necessary to extend the life of the structure in order to identify these loaded elements and reinforce the applied forces. First, this phenomenon involves a design of a large number of metal patches, where a large number of drills have to be made in the body... 

    Stress Analysis of LCP and DCP in Normal and Osteoporosis Femur

    , M.Sc. Thesis Sharif University of Technology Esmaeilpour, Mohammad Rasoul (Author) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract

    Metallic implants are often used in the open reduction and internal fixation of fractures. Open reduction and internal fixation are commonly used in cases of trauma when the bone cannot be healed using external methods such as casting. The locking compression plate combines the conventional screw holes, which use non-locking screws, with locking screw holes, which use locking head screws. This allows for more versatility in the application of the plate.
    In the present work, the stress (von-mises) and deformation of a locking compression plate fixed across a transverse fracture (2-mm gap) at the midshaft of femur was evaluated by Ansys software. Femur model is divided to two part... 

    Numerical Analysis of Stresses and Steady State Creep Strain Rates Fields of a Short Fibre Composite

    , M.Sc. Thesis Sharif University of Technology Ghavami, Ali (Author) ; Abedian, Ali (Supervisor)
    Abstract
    A finite difference technique is developed to predict the second stage creep displacement rates and stress analysis of a short fiber metal matrix composite subjecting to a constant axial load. The exponential law is adopted to describe the matrix creep behavior. Also, a method for prediction of interfacial debonding at fiber/matrix interface is developed using a stress based method. The obtained results could greatly help to better understand the flow pattern of matrix material and the load transfer mechanism between fiber and matrix. The stress components and strain rates are also validated by the available FEM and experimental results  

    Introduction of Methods and Instructions for Life Extension and Recovery of Turbocharger Turbine wheel 900

    , M.Sc. Thesis Sharif University of Technology Mohammad Hosseini, Javad (Author) ; Adibnazari, Saeed (Supervisor)
    Abstract
    Turbochargers are industrial devices that widely are used in aviation, marine and automotive industry. Manufacturing cost and technology of their components vary according to their application fields. One of the most important components of these devices is turbine wheel, which needs to be solid, strong and have a high resistance in critical extraordinary conditions. In these days, it can be seen that superalloys are used remarkably in manufacturing of turbine wheels. When this part of turbine is damaged due to some different reasons, turbine wheel must be quit of circle Process according to repair instructions. In these conditions either turbine must be repaired or replaced by a new one;... 

    Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels

    , Article Engineering Failure Analysis ; Vol. 45, issue , October , 2014 , p. 449-455 Masoudi Nejad, R ; Sharif University of Technology
    Abstract
    One of the most important issues in railway wheels is residual stresses. It is desirable to produce less residual stresses when possible and to decrease the remaining residual stresses in the wheels. The objective of this paper is to provide an estimation of the residual stresses in the rail wheel caused by the stress field from heat treatment process of a railway wheel. A three-dimensional nonlinear stress analysis model has been applied to estimate stress fields of the railway mono-block wheel in heat treatment process. After forging or casting, railway wheels are heat-treated to induce the desirable circumferential compressive residual stress in the upper rim. Finite element analysis... 

    Deformation and stress analysis of sandwich cylindrical shells with a flexible core using harmonic differential quadrature method

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Vol. 37, issue. 1 , January , 2014 , p. 325-337 ; 16785878 Shokrollahi, H ; Kargarnovin, M. H ; Fallah, F ; Sharif University of Technology
    Abstract
    In this paper, based on the high-order theory (HOT) of sandwich structures, the response of sandwich cylindrical shells with flexible core and any sort of boundary conditions under a general distributed static loading is investigated. The faces and the core are made of isotropic materials. The faces are modeled as thin cylindrical shells obeying the Kirchhoff–Love assumptions. For the core material, it is assumed to be thick and the in-plane stresses are negligible. The governing equations are derived using the principle of the stationary potential energy. Using harmonic differential quadrature method (HDQM), the equations are solved for deformation components. The obtained results are... 

    Residual stress analysis of the autofrettaged thick-walled tube using nonlinear kinematic hardening

    , Article Journal of Pressure Vessel Technology, Transactions of the ASME ; Volume 135, Issue 2 , 2013 ; 00949930 (ISSN) Farrahi, G. H ; Voyiadjis, G ; Hoseini, S. H ; Hosseinian, E ; Sharif University of Technology
    2013
    Abstract
    Recent research indicates that accurate material behavior modeling plays an important role in the estimation of residual stresses in the bore of autofrettaged tubes. In this paper, the material behavior under plastic deformation is considered to be a function of the first stress invariant in addition to the second and the third invariants of the deviatoric stress tensor. The yield surface is assumed to depend on the first stress invariant and the Lode angle parameter which is defined as a function of the second and the third invariants of the deviatoric stress tensor. Furthermore for estimating the unloading behavior, the Chaboche's hardening evolution equation is modified. These... 

    An analytical model for stress analysis of short fiber composites in power law creep matrix

    , Article International Journal of Non-Linear Mechanics ; Volume 57 , 2013 , Pages 39-49 ; 00207462 (ISSN) Mondali, M ; Abedian, A ; Sharif University of Technology
    2013
    Abstract
    The creep deformation behavior of short fiber composites has been studied by an approximate analytical model. A perfect fiber/matrix interfacial bond is assumed and a power law function is considered for describing the steady state creep behavior of the matrix material. The results obtained from the proposed analytical solution satisfy the equilibrium and constitutive creep equations. Also, a parametric study was undertaken to define the effects of geometric parameters on the steady state creep strain rate of short fiber composites. The present model is then validated using the results of finite element method. The predicted strain rate and stress components by the proposed analytical... 

    An FEM approach for three - Dimensional thermoviscoelastic stress analysis of orthotropic cylinders made of polymers

    , Article Advanced Materials Research, Dubai ; Volume 685 , 2013 , Pages 295-299 ; 10226680 (ISSN) ; 9783037856765 (ISBN) Ashrafi, H ; Keshmiri, H ; Bahadori, M. R ; Shariyat, M ; Sharif University of Technology
    2013
    Abstract
    The objective of this study is to develop a general finite element formulation associated with an incremental adaptive procedure which established for thermoviscoelastic stress analysis of orthotropic cylinders made of polymers. This paper concerned with development of a numerical algorithm for the solution of the quasistatic initial/boundary value problems involving the linear viscoelastic media with thermal and mechanical deformations. The viscoelastic constitutive equations, represented in an integral form and involving relaxation functions, are transformed into an incremental algebraic relation. An incremental relaxation is then developed for the finite element formulation to deal with... 

    Evaluation of the effect of anisotropic consolidation and principle stress rotation on undrained behavior of silty sands

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1637-1653 ; 10263098 (ISSN) Keyhani, R ; Haeri, S. M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    The dependence of undrained behavior of silty sand on initial state of stress and direction of principal stresses with respect to vertical (ff) is assessed under generalized loading paths using hollow cylinder apparatus. During applying shear load, value of intermediate principal stress parameter (b) is held constant and ff value is increased from zero to the aimed value and held constant. Specimens are consolidated, both, isotropically and anisotropically to evaluate the effect anisotropic consolidation on the behavior of these soils. The wet tamping method was selected to prepare specimen. Shear loading was carried out under strain-controlled condition to capture post-peak strain-softening... 

    Analytical modeling of squeeze film damping in micromirrors

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011, Washington, DC ; Volume 7 , 2011 , Pages 79-85 ; 9780791854846 (ISBN) Moeenfard, H ; Ahmadian, M. T ; Farshidianfar, A ; Sharif University of Technology
    2011
    Abstract
    In the current paper, Extended Kantorovich Method (EKM) has been utilized to analytically solve the problem of squeezed film damping in micromirrors. A one term Galerkin approximation is used and following the extended Kantorovich procedure, the solution of the Reynolds equation which governs the squeezed film damping in micromirrors is reduced to solution of two uncoupled ordinary differential equation which can be solved iteratively with a rapid convergence for finding the pressure distribution underneath the micromirror. It is shown that the EKM results are independent of the initial guess function. It is also shown that since EKM is highly convergent, practically one iterate is... 

    Analysis of Al A359/SiCp functionally graded cylinder subjected to internal pressure and temperature gradient with elastic-plastic deformation

    , Article Journal of Thermal Stresses ; Volume 34, Issue 10 , May , 2011 , Pages 1054-1070 ; 01495739 (ISSN) Parvizi, A ; Naghdabadi, R ; Arghavani, J ; Sharif University of Technology
    2011
    Abstract
    In this article, an analytical elastic-plastic solution for thick-walled cylinders made of Functionally Graded Materials (FGMs) subjected to internal pressure and thermal loading is presented. Based on the experimental results, a mathematical model to predict the yielding through the thickness of FG AlA359/SiCp cylinder is developed. It is shown that under the temperature gradient loading, there is a point in the cylinder where the circumferential stress changes from compressive to tensile. The position of this point depends on the geometry and material properties of the FG cylinder and is independent of the temperature gradient  

    Sintering viscosity and sintering stress of nanostructured WC-Co parts prepared by powder injection moulding

    , Article Powder Metallurgy ; Volume 54, Issue 1 , Nov , 2011 , Pages 84-88 ; 00325899 (ISSN) Simchi, A ; Sharif University of Technology
    2011
    Abstract
    The uniaxial viscosity and sintering stress of WC-10Co-0·9VC (wt-%) were obtained by a loading dilatometer as functions of fractional density (0·64<ρ<0·93) and temperature (1084

    Systematic design method for bonded repair based on axiomatic design methodology

    , Article Procedia CIRP, 16 September 2015 through 18 September 2015 ; Volume 34 , 2015 , Pages 236-243 ; 22128271 (ISSN) Fouladi, E ; Abedian, A ; Giorgetti, A ; Citti, P ; Suh, N. P ; Matt, D ; Kathryn, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    When cracks along rivet holes and other highly stressed regions of mostly aged aircrafts are found, usually repairs are being made to arrest these cracks. Patches provide an innovative repair technique, which can enhance the way aircrafts are maintained. Composite patch design along with axiomatic design technique deployment is a possibility. Axiomatic Design (AD) is expressed as a system design methodology that is applicable to creation of a new design, analysis and improvement of an existing design. While, here Patch Design system architecture is expressed as application of principles of axiomatic design on top level requirements with consideration of design parameters and constraints. A...