Loading...
Search for: tensile-strength
0.007 seconds
Total 295 records

    Mechanical properties of steel fiber-reinforced concrete slab tracks on non-ballasted foundations

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1626-1636 ; 10263098 (ISSN) Madhkhan, M ; Entezam, A ; Torki, M. E ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Mechanical properties of slab tracks on a foundation with nonlinear stiffness are accounted for. At first, the cracking stages were inspected in FEM models, and it was learned that slab tracks have one-way exural behavior. Secondly, experimental full-scale models were made, and the accuracy of analyses was verified by comparing the FEM loadde ection curves with those of previous studies and validating the cracking and ultimate loads with those obtained from experiments. Finally, the effects of several parameters on the cracking and ultimate loads and the energy absorption of steel fiber-reinforced slab tracks were investigated by examining the real behavior of slab tracks on elastic... 

    Reduction of cement consumption by the aid of silica nano-particles (investigation on concrete properties)

    , Article Journal of Civil Engineering and Management ; Volume 18, Issue 3 , 2012 , Pages 416-425 ; 13923730 (ISSN) Bahadori, H ; Hosseini, P ; Sharif University of Technology
    2012
    Abstract
    In this study, effects of replacing cement with colloidal amorphous silica nano-particles have been experimentally investigated on the physical and mechanical properties, durability and microstructure of concrete. Experimental results include workability, fresh concrete density, and hardened concrete properties like compressive strength at different ages of 3, 7, and 28-days, and also 28-days splitting tensile strength. Furthermore, influence of silica nano-particles on durability and microstructure of concrete for 28-days specimens was tested by conducting water absorption test, Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX), respectively. In order to study... 

    Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method

    , Article Russian Journal of Non-Ferrous Metals ; Volume 53, Issue 2 , April , 2012 , Pages 169-175 ; 10678212 (ISSN) Parvizi, S ; Hasannaeimi, V ; Saebnoori, E ; Shahrabi, T ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    In this study, Porous NiTi shape memory alloy has been produced by mechanical alloying of the elemental Ni and Ti powders. The compacting process was done at two temperatures (warm and cold press) and then sintering at 980 and 1050°C was performed on the specimens. Microstructure and mechanical prop-erties of the samples were investigated by optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction. Moreover, shear punch test (SPT) employed to investigate the effect of compaction pressure and sintering temperature on the mechanical properties of the fabricated samples. It was revealed that warm compaction/sintering resulted in 15% yield stress improvement and 20% ultimate... 

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Vol 178 , August , 2016 , Pages 119–127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    , Article 4th Global Conference on Materials Science and Engineering, CMSE 2015, 3 August 2015 through 6 August 2015 ; Volume 103, Issue 1 , December , 2015 ; 17578981 (ISSN) Maleki, E ; Ashton A ; Ruda H. E ; Khotsianovsky A ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI)... 

    In-situ aluminum matrix composite produced by friction stir processing using FE particles

    , Article Materials Science and Engineering A ; Volume 641 , 2015 , Pages 380-390 ; 09215093 (ISSN) Sarkari Khorrami, M ; Samadi, S ; Janghorban, Z ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In-situ aluminum matrix composites were fabricated by 1-3 passes of friction stir process (FSP) using iron (Fe) particles with initial size of 10. μm. Although the initial reinforcing particles were relatively large in size and also agglomerated particles were formed in the obtained composites, all of the processed specimens fractured from the base metal during transverse tensile test. Longitudinal tensile tests revealed that the ultimate tensile strength (UTS) of the composites was up to 43% higher than that of the base metal; however, the strain to fracture of the composites reached to about 0.2. Al-Fe intermetallic compounds (IMCs) formed at the interface of the aluminum matrix and Fe... 

    The effect of dynamic strain aging on subsequent mechanical properties of dual-phase steels

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 4 , June , 2010 , Pages 607-610 ; 10599495 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    2010
    Abstract
    Dual-phase (DP) steels with different martensite contents were produced by subjecting a low carbon steel to various heat treatment cycles. In order to investigate the effect of dynamic strain aging (DSA) on mechanical properties, tensile specimens were deformed 3% at 300 °C. Room temperature tensile tests of specimens which deformed at 300 °C showed that both yield and ultimate tensile strengths increased, while total elongation decreased. The fatigue limit increased after pre-strain in the DSA temperature range. The effects of martensite volume fraction on mechanical properties were discussed  

    Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles

    , Article Materials Chemistry and Physics ; Volume 178 , 2016 , Pages 119-127 ; 02540584 (ISSN) Ezatpour, H. R ; Torabi Parizi, M ; Sajjadi, S. A ; Ebrahimi, G. R ; Chaichi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Aluminum metal-matrix nanocomposites (AMMNCs) fabricated by conventional stir-casting process usually show high porosity and poor distribution of nanoparticles within the matrix. In the current study, for the improvement of nanoparticles distribution in the aluminum matrix and enhancement of the mechanical properties, a mixture of Al/nano-Al2O3 powders were injected by pure argon gas into the molten 7075 aluminum alloy and this mixture was extruded at high temperature. Mechanical behavior of the final product was investigated by tensile and compression tests, hardness measurements, Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM) and Optical... 

    Improving the mechanical behavior of the adhesively bonded joints using RGO additive

    , Article International Journal of Adhesion and Adhesives ; Volume 70 , 2016 , Pages 277-286 ; 01437496 (ISSN) Marami, G ; Adib Nazari, S ; Faghidian, S. A ; Vakili Tahami, F ; Etemadi, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this research, Araldite 2011 has been reinforced using different weight fractions of Reduced Graphene Oxide (RGO). Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses were conducted and it has been shown that introduction of the RGO greatly changes the film morphology of the neat adhesive. Uni-axial tests were carried out to obtain the mechanical characteristics of the adhesive-RGO composites. It has been observed that introducing 0.5 wt% RGO enhances the ultimate tensile strength of the composites by 30%. In addition, single lap joints using neat adhesive and adhesive-RGO composites were fabricated to... 

    Predicting the ultimate grain size of aluminum sheets undergone constrained groove pressing

    , Article International Journal of Advanced Manufacturing Technology ; Volume 86, Issue 5-8 , 2016 , Pages 1639-1658 ; 02683768 (ISSN) Pouraliakbar, H ; Firooz, S ; Jandaghi, M. R ; Khalaj, G ; Nazari, A ; Sharif University of Technology
    Springer-Verlag London Ltd  2016
    Abstract
    The grain size of constrained groove pressed aluminum has been predicted through the genetic programming approach. “Sheet thickness,” “elongation,” “yield strength,” “ultimate tensile strength,” “total strain,” and “hardness,” along with “primary grain size” of the ultrafine-grained sheets were utilized as input parameters to obtain the ultimate grain size. A total number of 73 available data in the literature were gathered and randomly divided into 60 and 13 sets for algorithm training and testing, respectively. Among the presented models, the one with best performance utilized parameters of total strain, ultimate tensile strength, and primary grain size with 40 chromosomes, 10 head sizes,... 

    Influence of different types of nano-SiO2 particles on properties of high-performance concrete

    , Article Construction and Building Materials ; Volume 113 , 2016 , Pages 188-201 ; 09500618 (ISSN) Khaloo, A ; Mobini, M. H ; Hosseini, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The aim of this study was to evaluate the effects of applying low replacement ratios (0.75% and 1.50% of the binder weight) of nano-SiO2 particles with different specific surface areas (200 and 380 m2/g) on the properties of high-performance concrete (HPC). Mechanical (compressive and splitting tensile strengths), electrical resistivity, non-destructive (ultrasonic pulse velocity), and microstructural (mercury intrusion porosimetry, X-ray diffraction, and scanning electron microscopy) tests were conducted to investigate the macroscopic and microscopic effects of nano-SiO2 particles on HPC characteristics. The results indicated that the performance of nano-SiO2 particles significantly... 

    Fibrous and non-fibrous Perlite concretes – experimental and SEM studies

    , Article European Journal of Environmental and Civil Engineering ; 2016 , Pages 1-27 ; 19648189 (ISSN) Khonsari, S. V ; Eslami, E ; Anvari, A
    Taylor and Francis Ltd  2016
    Abstract
    Mechanical properties and microstructural analysis of Expanded Perlite Aggregate (EPA) concretes are presented. Using 10% EPA, the effects of using various types of fibre were investigated. For all specimens, fibrous and non-fibrous, the compressive and the splitting tensile strengths were obtained. Complete stress–strain curves for fibre-reinforced specimens were obtained. A new index for representing the toughness of fibre-reinforced Perlite concretes is introduced. The addition of fibres substantially increased the splitting tensile strength. Steel fibres with “indentations” had the best performance in this regard. Regarding the toughness, specimens with “hooked” steel fibres performed... 

    The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morphology

    , Article Materials Science and Engineering A ; Volume 527, Issue 1-2 , 2009 , Pages 235-238 ; 09215093 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    Abstract
    Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and... 

    The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures

    , Article Construction and Building Materials ; Volume 157 , 2017 , Pages 1001-1010 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Najafabadi, E. P ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    In this experimental study the effect of physical and thermal properties of various FRP bars on their performance under elevated temperatures are investigated. The parameters included the bars' diameter, type of fiber, type of resin, fiber to matrix ratio, and thermal properties were studied. Moreover, ANOVA (ANalysis Of VAriance) was performed in order to investigate the contribution of each variable on the obtained results. The results showed that in addition to the temperature, the bars' diameter, type of fiber, type of resin, and thermal properties (Tg and Td) of the FRP bars have contributions to the results, while the fiber to matrix ratio was found to be an ineffective factor. It was... 

    Microstructure, Strength, and Wear Behavior Relationship in Al-Fe3O4 Nanocomposite Produced by Multi-pass Friction Stir Processing

    , Article Journal of Materials Engineering and Performance ; Volume 26, Issue 7 , 2017 , Pages 3516-3530 ; 10599495 (ISSN) Eftekhari, M ; Movahedi, M ; Kokabi, A. H ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Aluminum matrix in situ nanocomposite was produced by one to six passes friction stir processing (FSP) with pre-placed Fe3O4 nanoparticles (15-20 nm). Microstructure studies showed that solid-state reactions between the aluminum matrix and Fe3O4 particles during the process led to in situ formation of Al3Fe and Al5Fe2 in the stir zone. Initial Fe3O4 as well as Al-Fe intermetallic compounds (IMCs) particles were homogeneously dispersed in a fine grain matrix after six passes of FSP. Hardness and ultimate tensile strength of the composites were increased 64 and 27%, respectively, compared to the base metal. The reasons were studied in the light of reinforcing particles distribution, formation... 

    The effect of elevated temperatures on the tensile performance of GFRP and CFRP sheets

    , Article Construction and Building Materials ; Volume 190 , 2018 , Pages 38-52 ; 09500618 (ISSN) Jarrah, M ; Pournamazian Najafabadi, E ; Houshmand Khaneghahi, M ; Vatani Oskouei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effects of fiber type (i.e., carbon and glass fibers) and intumescent paint on the tensile performance of fiber reinforced polymer (FRP) sheets at elevated temperatures are investigated. For this purpose, a series of tensile tests were conducted on the glass and carbon fiber reinforced polymer (GFRP and CFRP) sheets, with and without intumescent fire retardant paint, at different elevated temperatures. The studied temperatures ranged from 25 °C to 600 °C. Scanning electron microscopy was also used to examine the effects of elevated temperatures on FRP sheets and the fire protecting mechanism of the intumescent paint. Based on the test results, the tensile strength of the... 

    Synergistic strengthening by severe plastic deformation and post-heat treatment of a low-carbon steel

    , Article Steel Research International ; Volume 89, Issue 6 , 2018 ; 16113683 (ISSN) Soleimani, F ; Kazeminezhad, M ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    Low-carbon steel sheets are severely plastic deformed to strains of up to ≈3.48 and subsequently heat treated by conventional annealing followed by water-quenching. Four temperatures are chosen for the annealing below and over the Ac1 and Ac3 transformation lines. The effects of post-deformation heat treatment are investigated by evaluating the microstructure and mechanical properties, including strength, ductility, work hardening capability, and hardness. A maximum increase of 86% in the strength is obtained through intercritical annealing and quenching of the samples subjected to strain of 1.16. It is interesting that both the elongation and ultimate tensile strength values are higher... 

    Effect of applied stress and bar characteristics on the short-term creep behavior of FRP bars

    , Article Construction and Building Materials ; May , Volume 171 , 2018 , Pages 960-968 ; 09500618 (ISSN) Pournamazian Najafabadi, E ; Bazli, M ; Ashrafi, H ; Vatani Oskouei, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This paper presents the creep behavior of various FRP (GFRP, CFRP, and hybrid) bars in order to investigate the effects of different parameters, including the applied stress levels, bar diameter, and the type of fiber and resin in the creep behavior of FRP bars. The creep strains versus time curves were experimentally obtained for 83 days. Moreover, a statistical study, including analysis of variance (ANOVA) and linear Bayesian regression was conducted to investigate the contribution of the studied parameters. The results showed that in GFRP bars the ratio of ultimate creep strain to the initial elastic strain decreased when the applied stresses on the bars exceeded 30% of their ultimate... 

    Fibrous and non-fibrous Perlite concretes–experimental and SEM studies

    , Article European Journal of Environmental and Civil Engineering ; Volume 22, Issue 2 , 2018 , Pages 138-164 ; 19648189 (ISSN) Khonsari, V ; Eslami, E ; Anvari, A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Mechanical properties and microstructural analysis of Expanded Perlite Aggregate (EPA) concretes are presented. Using 10% EPA, the effects of using various types of fibre were investigated. For all specimens, fibrous and non-fibrous, the compressive and the splitting tensile strengths were obtained. Complete stress–strain curves for fibre-reinforced specimens were obtained. A new index for representing the toughness of fibre-reinforced Perlite concretes is introduced. The addition of fibres substantially increased the splitting tensile strength. Steel fibres with “indentations” had the best performance in this regard. Regarding the toughness, specimens with “hooked” steel fibres performed... 

    Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 214-220 ; 15266125 (ISSN) Karami Pabandi, H ; Jashnani, H. R ; Paidar, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The friction stir welding of AA2024-T6 to AA6061-T6 plates with a 4 mm thickness has been studied at constant traverse and rotational speeds of 1000 rpm and 100 mm/min, respectively. The position of alloys and the effects of precipitation hardening heat treatment in retreating and advancing side in the friction stir welding were analyzed. The tool with taper threaded pin was used for welding. Macro and microstructural analysis were investigated by using Optical and Field Emission-Scanning Electron Microscopes (FE-SEM) to check out the welded joints. Micro-hardness and Tensile tests were also done to study mechanical attributes of the joints. Microstructural analysis revealed some grain...