Loading...
Search for: tensile-strength
0.015 seconds
Total 296 records

    Prediction of mechanical properties of DP steels using neural network model

    , Article Journal of Alloys and Compounds ; Volume 392, Issue 1-2 , 2005 , Pages 177-182 ; 09258388 (ISSN) Bahrami, A ; Mousavi Anijdan, S. H ; Ekrami, A ; Sharif University of Technology
    2005
    Abstract
    In this investigation, a neural network model was used to predict mechanical properties of dual phase (DP) steels and sensivity analysis was performed to investigate the importance of the effects of pre-strain, deformation temperature, volume fraction and morphology of martensite on room temperature mechanical behavior of these steels. In order to train the neural network, dual-phase (DP) steels with different morphology and volume fractions of martensite were deformed between 2 and 8%, at high temperature range of 150-450 °C. The results of this investigation show that there is a good agreement between experimental and predicted values and the well-trained neural network has a great... 

    Studies on the properties and structure of electron-beam crosslinked low-density polyethylene/poly[ethylene-co-(vinyl acetate)] blends

    , Article Polymer International ; Volume 54, Issue 4 , 2005 , Pages 686-691 ; 09598103 (ISSN) Dadbin, S ; Frounchi, M ; Sabet, M ; Sharif University of Technology
    2005
    Abstract
    Blends of low-density polyethylene (LDPE) and poly[ethylene-co-(vinyl acetate)] (PEVA), crosslinked by electron-beam (EB) radiation, formed separate crystalline lattices with a homogeneous amorphous phase. The crystallinity of the EB-exposed samples slightly decreased, as verified by a slight reduction in the densities and melting heats and temperatures of the samples. The results obtained from both gel content and hot set tests showed that the degree of crosslinking in the amorphous regions was dependent on the dose and blend composition. The molecular weights between the crosslinks, measured from creep data, showed that an increasing PEVA content resulted in tighter network structures,... 

    Bone density may affect primary stability of anterior cruciate ligament reconstruction when organic core bone plug fixation technique used

    , Article Journal of Experimental Orthopaedics ; Volume 9, Issue 1 , 2022 ; 21971153 (ISSN) Dehestani, P ; Farahmand, F ; Borjali, A ; Bashti, K ; Chizari, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: Core Bone Plug Fixation (CBPF) technique is an implant-less methodology for ACL reconstruction. This study investigates the effect of bone density on CBPF stability to identify the bone quality that is likely to benefit from this technique. Methods: Artificial blocks with 160 (Group 1), 240 (Group 2), and 320 (Group 3) kg/m3 densities were used to simulate human bone with diverse qualities. These groups are representative of the elderly, middle age and young people, respectively. A tunnel was made in each test sample using a cannulated drill bit which enabled harvesting the core bone plug intact. Fresh animal tendon grafts were prepared and passed through the tunnel, so the core... 

    Phase field theory for fracture at large strains including surface stresses

    , Article International Journal of Engineering Science ; Volume 178 , 2022 ; 00207225 (ISSN) Jafarzadeh, H ; Farrahi, G. H ; Levitas, V. I ; Javanbakht, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Phase field theory for fracture is developed at large strains with an emphasis on a correct introduction of surface stresses at nanoscale. This is achieved by multiplying the cohesion and gradient energies by the local ratio of the crack surface areas in the deformed and undeformed configurations and with the gradient energy in terms of the gradient of the order parameter in the reference configuration. This results in an expression for the surface stresses which is consistent with the sharp surface approach. Namely, the structural part of the Cauchy surface stress represents an isotropic biaxial tension, with the magnitude of a force per unit length equal to the surface energy. The surface... 

    https://www.sciencedirect.com/science/article/abs/pii/S0032386122006103

    , Article Polymer ; Volume 255 , 2022 ; 00323861 (ISSN) Mohammadi, A ; Shojaei, A ; Salkhi Khasraghi, S ; Karimzad Ghavidel, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Present work illustrated that the performance of ultrafine silica (Si) particles was improved considerably by rational hybridization with nanodiamond (ND). For this, Si@ND hybrid particles synthesized by chemical hybridization were incorporated into styrene-butadiene rubber (SBR) up to 10 phr. Scanning electron microscopy revealed coarse flower-like clusters for Si@ND nanohybrids, while Si exhibited rigid agglomerates in SBR. Comparing with physical hybrid (Si&ND) and single Si particles, it was revealed that chemical hybrids synergistically improved tensile properties, like 100% and 135% improvements in tensile strength and elongation at break, respectively. Dynamic mechanical analysis of... 

    Synergy of titanium dioxide nanotubes and polyurethane properties for bypass graft application: Excellent flexibility and biocompatibility

    , Article Materials and Design ; Volume 215 , 2022 ; 02641275 (ISSN) Kianpour, G ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A flexible, porous and biocompatible titanium dioxide nanotubes (TNT) - polyurethane (PU) film has been produced as a new scaffold for artificial vascular grafts. Synergistic improvements in the properties of vertical TNT and PU was reached, including enhancements in their biocompatibility, mechanical strength, flexibility and porosity. Open-ended (OE) TNT-PU and close-ended (CE) TNT-PU films were synthesized and their mechanical and biological properties were compared with their pure PU counterparts. TNT were attached to PU with a new strategy. The resulting flexible structure was hydrophilic and super hydrophilic in OE-TNT-PU and CE-TNT-PU scaffolds, respectively. The gas leakage during... 

    Fabrication of high-strength al/sicp nanocomposite sheets by accumulative roll bonding

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 43, Issue 6 , 2012 , Pages 2085-2093 ; 10735623 (ISSN) Rezayat, M ; Akbarzadeh, A ; Owhadi, A ; Sharif University of Technology
    2012
    Abstract
    Accumulative roll bonding (ARB) was successfully used as a severe plastic deformation method to produce Al-SiC nanocomposite sheets. The effects of process pass and amount of SiC content on microstructure and mechanical properties of the composites are investigated. As expected, production of ultrafine grain structures by the ARB process as well as nanosize particulate reinforcements in the metal matrix composite (MMC) resulted in excellent mechanical properties. According to the results of the tensile tests, it is shown that the yield and tensile strengths of the composite sheet increased with the number of ARB cycles without saturation at the last cycles. Scanning electron microscopy (SEM)... 

    Production of high strength Al-Al 2O 3 composite by accumulative roll bonding

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 43, Issue 2 , February , 2012 , Pages 261-267 ; 1359835X (ISSN) Rezayat, M ; Akbarzadeh, A ; Owhadi, A ; Sharif University of Technology
    Abstract
    Recently accumulative roll bonding has been used as a novel method to produce particle reinforced metal matrix composites. In this study, aluminum matrix composite reinforced by submicron particulate alumina was successfully produced and the effects of number of ARB cycles and the amount of alumina content on the microstructure and mechanical properties of composites were investigated. According to the results of tensile tests, it is shown that the yield and tensile strengths of the composite are increased with the number of ARB cycles. Scanning electron microscopy (SEM) reveals that particles have a random and uniform distribution in the matrix by the ARB cycles and a strong mechanical... 

    Influence of martensite volume fraction on tensile properties of triple phase ferrite-bainite-martensite steels

    , Article Materials Science and Engineering A ; Volume 530, Issue 1 , 2011 , Pages 440-445 ; 09215093 (ISSN) Zare, A ; Ekrami, A ; Sharif University of Technology
    2011
    Abstract
    This paper presents the effect of martensite volume fraction (VM) on mechanical properties of AISI 4340 steel with ferrite-bainite-martensite microstructures. The steel bars were austenitized at 900°C for 1h followed by intercritical annealing at 740°C for 100min and quenching into a salt bath with temperature of 300°C and holding at different times to obtain triple phase (TP) microstructures with 34vol.% fraction ferrite and various martensite (or bainite) contents. Presence of three phases in adjacent to each other was confirmed by metallographic analysis and TEM studies. TEM observation also indicates higher density of dislocations within ferrite near martensite colonies compared to that... 

    Evaluation of microstructure and mechanical properties of aluminum to copper friction stir butt welds

    , Article TMS Annual Meeting, 27 February 2011 through 3 March 2011 ; March , 2011 , Pages 253-264 ; 9781118002018 (ISBN) Sarrafi, R ; Kokabi, A. H ; Abbasi Gharacheh, M ; Shalchi, B ; Sharif University of Technology
    2011
    Abstract
    A high-quality butt joint of aluminum to copper (Al/Cu) can rarely be achieved by conventional fusion and solid-state welding processes. In this research, the appropriateness of friction stir welding (FSW) for making high-quality Al/Cu welds was studied. A sound Al/Cu butt joint was achieved with relatively high strength in uni-axial tensile tests. Mechanical properties and microstructure of the sound friction stir welds were examined. The ultimate tensile strength of the joints reached about 75 percent of the aluminum base metal, with the fracture occurring at aluminum side. The metallurgical study of the welds before and after their failure in tensile tests showed that the heat affected... 

    Effects of stored strain energy on restoration mechanisms and texture components in an aluminum-magnesium alloy prepared by friction stir processing

    , Article Materials Science and Engineering A ; Volume 642 , August , 2015 , Pages 204-214 ; 09215093 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Plates of AA5052 (Al-Mg) alloy in both annealed (solution-treated) and wrought (rolled) temper conditions were subjected to friction stir processing (FSP) at various w/. v pitch ratios from 4 to 28. rev.min/mm. The role of stored strain energy on the evolution of restoration mechanisms and crystallographic texture components were assessed in terms of microstructural features evaluated using electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM) analysis. The results revealed that FSP significantly refined the grain structure and changed the crystallographic micro-texture components. The grain size of the annealed and wrought alloy was reduced from 49.4 and 9.7.... 

    Properties–microstructure relationship in Al–Fe in situ composite produced by friction stir processing

    , Article Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications ; Volume 233, Issue 10 , 2019 , Pages 1955-1965 ; 14644207 (ISSN) Najafi, A ; Movahedi, M ; Sadoughi Yarandi, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    Effects of Fe particle volume percent (from 0 to 5%) and changing the tool rotation direction in each pass were studied on the microstructure evolution and mechanical properties of the in situ Al/intermetallic composites produced by three passes friction stir processing (FSP) with ∼10 µm Fe particles. Optical and scanning electron microscopes were used for the investigation of the composite homogeneity, formation of Al–Fe intermetallic compounds, and fracture surfaces. Tensile and microhardness tests were also carried out to evaluate the mechanical properties of the composites. Solid-state reactions between the aluminum matrix and Fe particles led to in situ formation of Al3Fe and Al5Fe2... 

    Fabrication and characterization of core-shell electrospun fibrous mats containing medicinal herbs for wound healing and skin tissue engineering

    , Article Marine Drugs ; Volume 17, Issue 1 , 2019 ; 16603397 (ISSN) Zahedi, E ; Esmaeili, A ; Eslahi, N ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Nanofibrous structures mimicking the native extracellular matrix have attracted considerable attention for biomedical applications. The present study aims to design and produce drug-eluting core-shell fibrous scaffolds for wound healing and skin tissue engineering. Aloe vera extracts were encapsulated inside polymer fibers containing chitosan, polycaprolactone, and keratin using the co-axial electrospinning technique. Electron microscopic studies show that continuous and uniform fibers with an average diameter of 209 ± 47 nm were successfully fabricated. The fibers have a core-shell structure with a shell thickness of about 90 nm, as confirmed by transmission electron microscopy. By... 

    Gas tungsten arc lap welding of aluminum/steel hybrid structures

    , Article Marine Structures ; Volume 64 , 2019 , Pages 295-304 ; 09518339 (ISSN) Hasanniah, A ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Al-1050 clad St-12 sheets were first produced by cold roll bonding process with clad layer thickness of 350 and 1000 μm. Then, Al-5052 aluminum alloy and Al-1050/St-12 sheets were lap joined using gas tungsten arc welding with Al–Si filler metal. The effects of the clad layer thickness and welding current were studied on the joint properties. Macro/microstructural observations were done using optical and scanning electron microscopes (SEM) equipped with energy dispersive spectroscopy (EDS). Shear-tensile and microhardness tests were used for evaluation of the mechanical behavior of the joint. The results indicated that presence of the aluminum clad layer reduced the Al–Fe intermetallic... 

    Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    , Article Materials Characterization ; Volume 101 , March , 2015 , Pages 189-207 ; 10445803 (ISSN) Mohammadi, J ; Behnamian, Y ; Mostafaei, A ; Izadi, H ; Saeid, T ; Kokabi, A. H ; Gerlich, A. P ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560-1400 r/min and 16-40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS)... 

    Constrained groove pressing of low carbon steel: Nano-structure and mechanical properties

    , Article Materials Science and Engineering A ; Volume 527, Issue 16-17 , 2010 , Pages 4043-4049 ; 09215093 (ISSN) Khodabakhshi, F ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    2010
    Abstract
    In this study a severe plastic deformation method called constrained groove pressing (CGP) is used for imposing a high magnitude of strain into the low carbon steel sheets. Microstructural changes during process are examined by X-ray diffraction and optical observations. The grain size evolution during severe plastic deformation is studied using Williamson-Hall analysis on XRD pattern of the deformed samples. In effective strain of 4.64, ferrite grains with a submicron size of 200-300nm are achieved. The results show that constrained groove pressing can effectively refine the coarse-grained structure to an ultra fine grain range. Mechanical properties changes due to microstructure evolution... 

    Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture

    , Article Biomedical Microdevices ; Volume 19, Issue 4 , 2017 ; 13872176 (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Kiyoumarsioskouei, A ; Trung Nguyen, N ; Sharif University of Technology
    Abstract
    This paper reports the fabrication of electrospun polydimethylsiloxane (PDMS) membranes/scaffolds that are suitable for three-dimensional (3D) cell culture. Through modification the ratio between PDMS and polymethylmethacrylate (PMMA) as carrier polymer, we report the possibility of increasing PDMS weight ratio of up to 6 for electrospinning. Increasing the PDMS content increases the fiber diameter, the pore size, and the hydrophobicity. To our best knowledge, this is the first report describing beads-free, durable and portable electrospun membrane with maximum content of PDMS suitable for cell culture applications. To show the proof-of-concept, we successfully cultured epithelial lung... 

    Optimal Design of Feeding System in Steel Castings

    , Ph.D. Dissertation Sharif University of Technology Tavakoli, Ruhollah (Author) ; Davami, Parviz (Supervisor)
    Abstract
    n the present study, the optimal design of feeding system in steel sand-mold castings is considered. The first part of this research includes fundamental studies on the physics of shrinkage defect formation during the casting process. The results of these studies lead to new findings on the mechanism of shrinkage defect formation, effect of melt quality on the distribution of defects within the castings and the connection between shrinkage and gases defects. The theoretical analysis of thermal criterion functions for the prediction of shrinkage defects in castings and introducing new criterion function with fewer shortcomings can be accounted as the other finding of this part. A new model... 

    Study on the Phase Transformation and Mechanical Behavior of Duplex Stainless Steel Resistance Spot Welds

    , M.Sc. Thesis Sharif University of Technology Arabi, Hassan (Author) ; Pouranvari, Majid (Supervisor) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Use of materials with both high strength and good formability in car structure is a serious approach in the automotive industry to reduce weight as well as maintain the security of occupants. Stainless steels such as duplex steels are one of the most attractive candidates. Thus, metallurgical and mechanical behavior during resistance spot is important. The aim of this work is to study the microstructure-property relationships in resistance spot welding of duplex stainless steel. Austenite-ferrite phase balance and weld nugget size are two key factors determining the mechanical properties of these steels. High cooling rate of resistance spot welding can have a significant impact on the... 

    Friction Stir Sot Welding of Aluminum to Steel Using Consumable Pin

    , M.Sc. Thesis Sharif University of Technology Rafiei, Hamid Reza (Author) ; Movahedi, Mojtaba (Supervisor)
    Abstract
    Friction Stir Spot Welding as a solid state process is able to solve some of the disadvantages of fusion welding processes. On the other hand, this welding method has disadvantages such as low connection surface due to the hole left by the pin and poor resistance to fatigue loading. In this study, a method called friction stir spot welding via consumable pin was used so that the hole caused by the pin no longer remains at the welding site. The process is done in such a way that first a hole is made in the center of the overlap of the sheets. The rotating tool, in which the consumable pin is made of 6061 aluminum alloy with a diameter equal to the diameter of the hole is lowered at a...