Loading...
Search for: transmission-electron-microscopy
0.015 seconds
Total 433 records

    Doxorubicin/cisplatin-loaded superparamagnetic nanoparticles as a stimuli-responsive Co-delivery system for chemo-photothermal therapy

    , Article International Journal of Nanomedicine ; Volume 14 , 2019 , Pages 8769-8786 ; 11769114 (ISSN) Khafaji, M ; Zamani, M ; Vossoughi, M ; Iraji zad, A ; Sharif University of Technology
    Dove Medical Press Ltd  2019
    Abstract
    Introduction: To date, numerous iron-based nanostructures have been designed for cancer therapy applications. Although some of them were promising for clinical applications, few efforts have been made to maximize the therapeutic index of these carriers. Herein, PEGylated silica-coated iron oxide nanoparticles (PS-IONs) were introduced as multipurpose stimuli-responsive co-delivery nanocarriers for a combination of dual-drug chemotherapy and photothermal therapy. Methods: Superparamagnetic iron oxide nanoparticles were synthesized via the sonochemical method and coated by a thin layer of silica. The nanostructures were then further modified with a layer of di-carboxylate polyethylene glycol... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Point-of-use rapid detection of sars-cov-2: Nanotechnology-enabled solutions for the covid-19 pandemic

    , Article International Journal of Molecular Sciences ; Volume 21, Issue 14 , 2020 , Pages 1-23 Rabiee, N ; Bagherzadeh, M ; Ghasemi, A ; Zare, H ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Rabiee, M ; Ramakrishna, S ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 pandemic that has been spreading around the world since December 2019. More than 10 million affected cases and more than half a million deaths have been reported so far, while no vaccine is yet available as a treatment. Considering the global healthcare urgency, several techniques, including whole genome sequencing and computed tomography imaging have been employed for diagnosing infected people. Considerable efforts are also directed at detecting and preventing different modes of community transmission. Among them is the rapid detection of virus presence on different surfaces with which people may come in... 

    Zn-rich (GaN)1−x(ZnO)x: a biomedical friend?

    , Article New Journal of Chemistry ; Volume 45, Issue 8 , 2021 , Pages 4077-4089 ; 11440546 (ISSN) Bagherzadeh, M ; Rabiee, N ; Fatahi, Y ; Dinarvand, R ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    A Zn-Rich (GaN)1−x(ZnO)xnanostructure was synthesized with the assistance of a high-gravity technique in order to reduce the reaction time and temperature. The synthesized inorganic nanomaterial has been applied in both drug and gene delivery systems, and as the first fully inorganic nanomaterial, it was investigated in a comprehensive cellular investigation as well. In order to increase the potential bioavailability, as well as the interactions with the pCRISPR, the nanomaterial was enriched with additional Zn ions. The nanomaterial and the final nanocarrier were characterized at each step before and after any biological analysisviaFESEM, AFM, TEM, FTIR and XRD. The polymer coated... 

    Preparation of novel and highly active magnetic ternary structures (metal-organic framework/cobalt ferrite/graphene oxide) for effective visible-light-driven photocatalytic and photo-fenton-like degradation of organic contaminants

    , Article Journal of Colloid and Interface Science ; Volume 602 , 2021 , Pages 73-94 ; 00219797 (ISSN) Bagherzadeh, B ; Kazemeini, M ; Mahmoodi, N. M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, MIL-101(Fe), CoFe2O4, novel binary (MIL-101(Fe)/CoFe2O4, MIL-101(Fe)/GO and CoFe2O4/GO), and ternary (MIL-101(Fe)/CoFe2O4/(3%)GO and MIL-101(Fe)/CoFe2O4/(7%)GO) magnetic composites based upon the MIL-101(Fe) were synthesized. The XRD, FESEM, TEM, EDX, BET-BJH, FTIR, VSM, DRS, PL, EIS and other electrochemical analyses were applied to characterize samples. The MIL/CoFe2O4/(3%)GO demonstrated the best performance compared to other samples for visible light photocatalytic and photo-Fenton-like degradation of Direct Red 23 (DtR-23), Reactive Red 198 (ReR-198) dyes as well as Tetracycline Hydrochloride (TC-H) antibiotic. Degradation of dyes using the ternary composite after 70 min of... 

    Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect

    , Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) Dabbagh Moghaddam, F ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells.... 

    An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light

    , Article Journal of Hazardous Materials ; Volume 413 , 2021 ; 03043894 (ISSN) Kohantorabi, M ; Giannakis, S ; Moussavi, G ; Bensimon, M ; Gholami, M. R ; Pulgarin, C ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In this work, Ag nanoparticles were loaded on ZIF-67 covered by graphene oxide (Ag/ZIF-67@GO), and its catalytic performance was studied for the heterogeneous activation of peroxymonosulfate (PMS) under visible-light. The catalyst surface morphology and structure were analyzed by FT-IR, XRD, XPS, DRS, FE-SEM, EDX, TEM, BET, ICP-AES and TGA analysis. The efficacy of PMS activation by the Ag/ZIF-67@GO under visible light was assessed by phenol degradation and E. coli inactivation. Phenol was completely degraded within 30 min by HO•, SO4•− and O2•− generated through the photocatalytic PMS activation. In addition, total E. coli inactivation was attained in 15 min that confirmed the highly... 

    Polymer-Coated NH2-UiO-66 for the codelivery of DOX/pCRISPR

    , Article ACS Applied Materials and Interfaces ; Volume 13, Issue 9 , 2021 , Pages 10796-10811 ; 19448244 (ISSN) Rabiee, N ; Bagherzadeh, M ; Heidarian Haris, M ; Ghadiri, A. M ; Matloubi Moghaddam, F ; Fatahi, Y ; Dinarvand, R ; Jarahiyan, A ; Ahmadi, S ; Shokouhimehr, M ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Herein, the NH2-UiO-66 metal organic framework (MOF) has been green synthesized with the assistance of high gravity to provide a suitable and safe platform for drug loading. The NH2-UiO-66 MOF was characterized using a field-emission scanning electron microscope, transmission electron microscope (TEM), X-ray diffraction, and zeta potential analysis. Doxorubicin was then encapsulated physically on the porosity of the green MOF. Two different stimulus polymers, p(HEMA) and p(NIPAM), were used as the coating agents of the MOFs. Doxorubicin was loaded onto the polymer-coated MOFs as well, and a drug payload of more than 51% was obtained, which is a record by itself. In the next step, pCRISPR was... 

    Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath

    , Article Analytica Chimica Acta ; Volume 1198 , 2022 ; 00032670 (ISSN) Soufi, G ; Bagheri, H ; Yeganeh Rad, L ; Minaeian, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Lung cancer (LC) is the leading cause of cancer mortality so, the analysis of exhaled human breath has great significance for early non-invasive diagnosis. Poor selectivity and strong humidity are two bottlenecks for the application of gas sensors to exhaled breath analysis. The development of novel extractive phases for the analysis of exhaled breath by chromatography is therefore a lucrative object. Polyhedral oligomeric silsesquioxanes (POSS) are among the 3D porous materials whose unique properties make them promising coatings for solid-phase microextraction (SPME). Selective enrichment of polar or nonpolar targets depends on the pore size and functional groups on the POSSs. Herein, we... 

    Encapsulation of spinel CuCo2O4 hollow sphere in V2O5-decorated graphitic carbon nitride as high-efficiency double Z-type nanocomposite for levofloxacin photodegradation

    , Article Journal of Hazardous Materials ; Volume 423 , 2022 ; 03043894 (ISSN) Hasanvandian, F ; Shokri, A ; Moradi, M ; Kakavandi, B ; Rahman Setayesh, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, spinel CuCo2O4 (CCO) with a hierarchical hollow sphere morphology was encapsulated in V2O5-decorated ultra-wrinkled graphitic carbon-nitride (VO-UCN) for the first time via a facile glycerol-assisted solvothermal method in the interest of developing a novel high-efficiency double Z-type nano-photocatalyst (denoted as VO-UCN@CCO). The remarkable physicochemical features of the as-prepared nano-photocatalysts were verified using diverse characterization techniques including TGA, XRD, FT-IR, FE-SEM, TEM, BET, UV–vis DRS, PL, EIS, and transient photocurrent techniques. Herein, VO-UCN@CCO nanocomposite was employed for the photodisintegration of levofloxacin (LVOF) antibiotic under... 

    Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol

    , Article Journal of Colloid and Interface Science ; Volume 345, Issue 1 , 2010 , Pages 64-71 ; 00219797 (ISSN) Jafari, T ; Simchi, A ; Khakpash, N ; Sharif University of Technology
    Abstract
    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometere (VSM), UV-visible spectroscopy, and Fourier... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting...