Loading...
Search for: transmission-electron-microscopy
0.009 seconds
Total 433 records

    Sol-gel synthesis of Mn1.5Co1.5O4 spinel nano powders for coating applications

    , Article Materials Research Bulletin ; Volume 102 , 2018 , Pages 180-185 ; 00255408 (ISSN) Hashemi, S. T ; Dayaghi, A. M ; Askari, M ; Gannon, P. E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Mn1.5Co1.5O4 oxide spinels are widely used as protective coatings for stainless steel interconnects within planar solid oxide fuel cell stacks. Containing both cubic and tetragonal crystalline phases, these Mn/Co oxide spinels exhibit favorable thermal stability and electronic conductivity for the SOFC interconnect application. Slurry-based coating applications of Mn/Co oxides require precursor powders, which can benefit from being nano-structured. In this study, the sol-gel synthesis of nanocrystalline Mn1.5Co1.5O4 spinel is investigated. The decomposition of sol-gel precursors, as well as the crystalline phase structures and microstructures of the product Mn1.5Co1.5O4 are characterized by... 

    Performance of silver nanoparticle fixed on magnetic iron nanoparticles (Fe3O4−Ag) in water disinfection

    , Article Micro and Nano Letters ; Volume 13, Issue 4 , April , 2018 , Pages 436-441 ; 17500443 (ISSN) Sharifi, R ; Hassani, A. H ; Ahmad Panahi, H ; Borghei, M ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Microbial contamination poses a serious threat to human health. The evaluation of alternative systems and their reliability for the treatment of water is essential. In this work, a new method for the deposit of more silver nanoparticles (AgNPs) on the external surface of Fe3O4 nanoparticles is presented. Fe3O4 nanoparticles were synthesised by chemical co-precipitation and were modified in two stages using 3-mercaptopropyl trimethoxysilane and grafting allyl glycidyl ether and N, N-dimethylacrylamide. Then, AgNPs were loaded onto the modified Fe3O4 to be used for water disinfection. The resulting nanoparticles were characterised by transmission electron microscopy, X-ray powder diffraction,... 

    Novel microfluidic graphene oxide–protein amperometric biosensor for detecting sulfur compounds

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 3 , 2019 , Pages 353-360 ; 08854513 (ISSN) Ghaemi, A ; Abdi, K ; Javadi, S ; Shehneh, M. Z ; Yazdian, F ; Omidi, M ; Rashedi, H ; Haghiralsadat, B. F ; Asayeshnaeini, O ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Abstract
    Sulfur compounds are essential for many industries and organisms; however, they cause serious respiratory problems in human beings. Therefore, determination of sulfur concentration is of paramount importance. The research approach in the field of detecting contaminants has led to smaller systems that provide faster and more effective ways for diagnosis purposes. In this study, a novel portable amperometric graphene oxide–protein biosensor platform is investigated. The main characteristic of this structure is the implementation of a microfluidic configuration. With albumin metalloprotein as the biorecognition element, graphene oxide was synthesized and characterized by transmission electron... 

    Effect of copper on the thermal stability and non-isothermal crystallization behavior of Al 86 Ni 10-x Cu x RE 4 (x = 0.5–2.5) amorphous alloys prepared by melt spinning

    , Article Journal of Non-Crystalline Solids ; Volume 506 , 2019 , Pages 46-50 ; 00223093 (ISSN) Mansouri, M ; Varahram, N ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Microstructural features, thermal stability and crystallization kinetics of various melt spun Al-based alloys containing transition metals (TM = Ni, Cu) and Ce-based rare earth metals (MM: Misch Metal) were investigated via X-ray diffractometry (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). It is shown that the extended topological instability of Egami-Waseda model (λ criterion) is a useful tool to predict the crystallization behavior of the prepared alloys. FCC-Al nanoparticles are formed during the initial crystallization process. Calculation of the apparent activation energy using the Kissinger method indicates that partial replacement of... 

    Synthesis and characterization of CaO-P2O5-SiO2-Li2O-Fe2O3 bioactive glasses: The effect of Li2O-Fe2O3 content on the structure and in-vitro bioactivity

    , Article Journal of Non-Crystalline Solids ; Volume 503-504 , 2019 , Pages 139-150 ; 00223093 (ISSN) Arabyazdi, S ; Yazdanpanah, A ; Ansari Hamedani, A ; Ramedani, A ; Moztarzadeh, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    CaO-P2O5-SiO2-Li2O-Fe2O3 magnetic bioactive glasses were prepared through an optimized sol-gel method. This study was emphasized on the effects of magnetic content addition on the bioactive glass properties. As the need arises, we study synthesized magnetic bioactive glass physical, rheological, and biocompatible properties. The morphology and composition of these glasses were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The particle size was also determined using a laser particle size analyzer (LPSA). The thermal measurements were put through using Differential thermal analysis (DTA). In order to evaluate the... 

    Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4

    , Article Solar Energy ; Volume 211 , 15 November , 2020 , Pages 100-110 Moradi, M ; Khorasheh, F ; Larimi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Pt@Bi-TiO2 photocatalysts with different Bi (0–5 wt%) and Pt (0–2 wt%) contents were prepared by a two-step sol-gel and photo-deposition technique and were used in photo-reduction of CO2. The synthesized catalysts were characterized by X-ray powder diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), scanning and transmission electron microscopy (SEM and TEM), nitrogen sorption measurement (BET), Raman spectroscopy, Electron paramagnetic resonance (EPR) spectroscopy and photoluminescence spectroscopy (PL). CO2 photo-reduction results revealed that the introduction of Bi into TiO2 structure and subsequent loading of Pt on its surface significantly increased the methane yield.... 

    Synthesis and characterization of molybdenum (VI) complex immobilized on polymeric Schiff base-coated magnetic nanoparticles as an efficient and retrievable nanocatalyst in olefin epoxidation reactions

    , Article Applied Organometallic Chemistry ; Volume 34, Issue 3 , 2020 Mortazavi Manesh, A ; Bagherzadeh, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    In this study, a new polymeric functionalized magnetic nanocatalyst containing a molybdenum Schiff base complex was prepared using a few consecutive steps. Poly (methylacrylate)-coated magnetic nanoparticles were synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the amidation of the methyl ester groups with hydrazine. Polymeric functionalization efficiently provides the advantage that more catalytic units can be grafted on the surface of magnetic nanoparticles. The functionalization process was continued with salicylaldehyde which introduced Schiff base groups on to the surface of the polymeric support. In the final step, the desired... 

    Magnetic hyperthermia behaviour of Co and reduced GO nanocomposites

    , Article Micro and Nano Letters ; Volume 15, Issue 4 , April , 2020 , Pages 239-244 Kakavand, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    Co-precipitation of CoCl2.6H2O with graphene oxide (GO) and heating at 400°C for 4 h under hydrogen resulted in the construction of cobalt/ reduced GO (Co/rGO) nanocomposite utilisable in magnetic thermal therapy. Field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, thermogravimetric analysis/derivative thermogravimetry, and X-ray diffraction methods characterised the samples. Time-temperature curves of the samples containing 30, 50, 70, and 100 µg ml−1 Co/rGO nanoparticles (NPs) suspended in phosphate-buffered saline were determined at different specific heating rates. Magnetic-field response of... 

    Photocatalytic degradation of methylene blue by TiO2-capped ZnO nanoparticles

    , Article 2nd International Congress on Ceramics, ICC 2008, Verona, 29 June 2008 through 4 July 2008 ; 2008 ; 9788880800842 (ISBN) Simchi, A ; Lak, A ; Nemati, Z. A ; SACMI; Iris Ceramica; SITI - B and T Group; Element Six; Corning ; Sharif University of Technology
    2008
    Abstract
    ZnO nanoparticles were fabricated via hydrothermal method and an amorphous TiO2 layer was then coated on the nanoparticles via sol-gel route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the synthesized ZnO nanoparticles were hexagonal with wurtzite structure and an average particle size of 38 nm. The thickness of the titanium oxide layer was determined to be 20-40 nm. The photocatalytic decolorization of Methylene blue under UV irradiation indicated that as-prepared TiO 2-capped ZnO is inferior than ZnO particles. Nevertheless, calcinations of the particles at 350 °C for 24 h significantly improved the photo-activity of the ZnO/TiO2 core/shell... 

    Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation

    , Article Nature Communications ; Volume 12, Issue 1 , 2021 ; 20411723 (ISSN) Sheibani, S ; Basu, K ; Farnudi, A ; Ashkarran, A ; Ichikawa, M ; Presley, J. F ; Bui, K. H ; Ejtehadi, M. R ; Vali, H ; Mahmoudi, M ; Sharif University of Technology
    Nature Research  2021
    Abstract
    The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their... 

    Field-emission enhancement of molybdenum oxide nanowires with nanoprotrusions

    , Article Journal of Nanoparticle Research ; Volume 13, Issue 1 , January , 2011 , Pages 115-125 ; 13880764 (ISSN) Khademi, A ; Azimirad, R ; Nien, Y. T ; Moshfegh, A. Z ; Sharif University of Technology
    2011
    Abstract
    The field-emission properties of molybdenum oxide nanowires grown on a silicon substrate and its emission performance in various vacuum gaps are reported in this article. A new kind of molybdenum oxides named nanowires with nanoscale protrusions on their surfaces were grown by thermal vapor deposition with a length of ~1 μm and an average diameter of ~50 nm. The morphology, structure, composition and chemical states of the prepared nanostructures were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). According to XRD, XPS, and TEM analyses, the synthesized samples... 

    Photocatalytic removal of 2-nitrophenol using silver and sulfur co-doped TiO2 under natural solar light

    , Article Water Science and Technology ; Volume 72, Issue 3 , 2015 , Pages 339-346 ; 02731223 (ISSN) Feilizadeh, M ; Delparish, A ; Toufigh Bararpour, S ; Abedini Najafabadi, H ; Zakeri, S. M. E ; Vossoughi, M ; Sharif University of Technology
    IWA Publishing  2015
    Abstract
    To overcome the drawback of poor solar light utilization brought about by the narrow photoresponse range of TiO2, a silver and sulfur co-doped TiO2 was synthesized. Using the prepared catalyst, solar photocatalytic degradation of 2-nitrophenol (2-NP) by a TiO2-based catalyst was studied for the first time. Effects of the co-doping on the structural, optical and morphological properties of the synthesized nanoparticles were investigated by different characterization methods: X-ray diffraction, N2 adsorption-desorption measurements, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible diffuse reflectance spectroscopy and Fourier... 

    Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 271-279 ; 09277765 (ISSN) Hatamie, S ; Ahadian, M. M ; Ghiass, M. A ; Iraji zad, A ; Saber, R ; Parseh, B ; Oghabian, M. A ; Shanehsazzadeh, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15 nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    AgPt nanoparticles supported on magnetic graphene oxide nanosheets for catalytic reduction of 4-nitrophenol: studies of kinetics and mechanism

    , Article Applied Organometallic Chemistry ; Volume 31, Issue 11 , 2017 ; 02682605 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Abstract
    AgxPt100−x (x = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as-prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO-AgxPt100−x catalysts were applied in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Highly sensitive nonenzymetic glucose sensing platform based on MOF-derived NiCo LDH nanosheets/graphene nanoribbons composite

    , Article Journal of Electroanalytical Chemistry ; Volume 808 , 2018 , Pages 114-123 ; 15726657 (ISSN) Asadian, E ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a novel sensing platform based on NiCo layered double hydroxide (LDH) nanosheets/graphene nanoribbons (GNRs) modified glassy carbon electrode is presented for sensitive non-enzymetic determination of glucose. In the first step, nanoflower-like NiCo LDH nanosheets were grown on the surface of ZIF-67 dodecahedron nanocrystals which used as sacrificial template and were further characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD) and FTIR. In the next step, in order to fabricate a mechanically stable modified electrode, the as-prepared nanosheets were mixed with... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Nanostructure and mechanical properties of 0-7 strained aluminum by CGP: XRD, TEM and tensile test

    , Article Materials Science and Engineering A ; Volume 526, Issue 1-2 , 2009 , Pages 219-224 ; 09215093 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity aluminum sheets are subjected to a severe plastic deformation technique called constrained groove pressing. In this study for the first time by using some technical optimizations, a strain magnitude of 6.9 is imposed to the sheets. The grain size evolution during severe plastic deformation is studied using Williamson-Hall analysis on X-ray diffraction pattern of the deformed samples. These results and transmission electron microscopy observations show that constrained groove pressing process can effectively refine the coarse-grained structure to an ultrafine grain range. The results of mechanical tests show that imposing strain in range of 0-5.75 causes to strengthening of...