Loading...
Search for: waste-treatment
0.012 seconds

    Design & Manufacture of IGF/DGF Plant in Semi Industrial Scale for Wastewater Separation

    , M.Sc. Thesis Sharif University of Technology Hemmati, Amir Hossein (Author) ; Ghotbi, Siroos (Supervisor)
    Abstract
    The increasing demand for energy forced to production of oil as one of the main sources of energy. Along with the increase in oil production, the proportion of water produced with oil is increasing relative to the oil produced. On the other hand, environmental restrictions for the discharge of industrial effluents into the environment are becoming more and more stringent every day. Before discharging the effluent into the environment, petroleum must be removed. The complexity of these issues demonstrates the need to develop new technologies and improve the efficiency of existing technologies. Gas flotation are among the technologies adopted in the field that have been used throughout the... 

    Investigation of Sulfate Reducing Bacteria for Treatment of Wastewaters Polluted by Heavy Metals

    , M.Sc. Thesis Sharif University of Technology Kakavand, Nargess (Author) ; Kariminia Hamedani, Hamid Reza (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    The main objective of this research was to evaluate the application of a new strain of Brevundimonas naejangsanensis which is newly identified sulfate-reducing bacteria (SRB), in chromium(VI) removal in contaminated wastewater. A laboratory scale packed bed reactor (PBR) was fabricated and operated to study the bacteria’s feasibility on chromium(VI) reduction and removal. The reactor was packed with polyurethane foam cubes and operated under different feeding and operating conditions of HRT, COD/〖SO〗_4^(2-) ratio and influent chromium(VI) concentration. A maximum chromium removal of 94.6% was achieved in the PBR when operated at an HRT of 24 h with COD/〖SO〗_4^(2-) ratio of .70 and influent... 

    Zinc based Metal-organic Frame Work Nanomaterial to Remove Contaminant from Water

    , M.Sc. Thesis Sharif University of Technology Mohebali Nezhadian, Mahnaz (Author) ; Ghotbi, Cyrus (Supervisor) ; Khorashe, Farhad (Supervisor) ; Mahmoodi, Niyaz Mohammad (Supervisor)
    Abstract
    In present work, we fabricated novel heterojunction magnetic composite and the goo visible-light-harvesting photocatalysts through integration of ZnFe2O4 and MIL-53 by facile solvothermal method. To understand physical and chemical structure prepared material and morphology of samples, The XRD,FTIR, FESEM, DRS and VSM analysis were carried out. The ZFO/M53Fe/vis-light system reveled 92.3% dye degradation which enhanced photo catalyst reactivity for the decolorization of Direct red 23 as anionic dye under irraditation of LED lamp through AOP environment friendly technology, which are significantly higher than those of pure ZFO and M53Fe semiconductors. more ever ,aforementioned composite... 

    Development of Simulation Model and Optimal Design of Water and Energy Recirculation System in Residential Towers

    , M.Sc. Thesis Sharif University of Technology Javadinia, Maryam (Author) ; Saboohi, Yadollah (Supervisor) ; Fathi, Amir Hossein (Supervisor)
    Abstract
    nowadays, due to population growth, unconventional use of water resources and on the other hand, climate change, limited renewable water resources, reduction of groundwater cavities, the need for water for agricultural use and energy production are increasing. Due to the fact that each cubic meter of dirty water pollutes 40 to 60 cubic meters of clean water and the entry of polluted effluent into the receiving sources of environmental degradation leads to a lot of wastewater treatment, water consumption management and The development of wastewater treatment processes is also becoming increasingly important. At present, wastewater treatment plants face the challenges of high energy... 

    Dynamic Simulation of a Bioprocess for Simultaneous Desalination and Water Wast Treatment

    , M.Sc. Thesis Sharif University of Technology Hosseini Vejdan, Davar (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    Microbial desalination cells have been considered as one of the most promising technologies in water desalination and wastewater treatment. Due to slow biological processes, experimental approach toward these types of cells has always been a challenge. Consequently, modeling and simulation techniques are crucial to be developed in order to avoid wasting time and resources.In this study, a dynamic model for a microbial desalination cell consisting of three parts: anode, cathode and desalination section is proposed in which changes in microorganism concentration, acetate concentration as anode feed, oxygen concentration in cathode, pH changes and electrical potential drop in anode and cathode... 

    Design of a Desalination System with High Recovery Using Membrane Based Systems

    , M.Sc. Thesis Sharif University of Technology Naderi Beni, Ali (Author) ; Mousavi, Ali (Supervisor) ; Nouri Borujerdi, Ali (Supervisor)
    Abstract
    Osmotically assisted reverse osmosis (OARO) assimilates high efficiency due to non-thermal processes and accessing high salinity. This makes it suitable for high water recovery for the purpose of zero- and minimal liquid discharge desalination. Moreover, forward osmosis (FO) has low fouling efficiency which makes the operating costs of cleaning and replacement lower. This study aims at incorporating OARO and FO in a novel configuration with multiple inlet of the diluted draw solution to the regeneration section. Pinch analysis with simplifying assumptions was carried out for FO and OARO standalone stages. The results showed that pinch point in FO resides either on the beginning or at the end... 

    Viable medical waste chain network design by considering risk and robustness

    , Article Environmental Science and Pollution Research ; Volume 29, Issue 53 , 2022 , Pages 79702-79717 ; 09441344 (ISSN) Lotfi, R ; Kargar, B ; Gharehbaghi, A ; Weber, G. W ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Medical waste management (MWM) is an important and necessary problem in the COVID-19 situation for treatment staff. When the number of infectious patients grows up, the amount of MWMs increases day by day. We present medical waste chain network design (MWCND) that contains health center (HC), waste segregation (WS), waste purchase contractor (WPC), and landfill. We propose to locate WS to decrease waste and recover them and send them to the WPC. Recovering medical waste like metal and plastic can help the environment and return to the production cycle. Therefore, we proposed a novel viable MWCND by a novel two-stage robust stochastic programming that considers resiliency (flexibility and... 

    Crude oil desalter effluent treatment by a hybrid UF/RO membrane separation process

    , Article Desalination ; Volume 238, Issue 1-3 , 2009 , Pages 174-182 ; 00119164 (ISSN) Norouzbahari, S ; Roostaazad, R ; Hesampour, M ; Sharif University of Technology
    2009
    Abstract
    Crude oil desalter effluent from a Tehran oil refinery was treated by a hybrid UF/RO membrane separation process. Ultrafiltration (UF) was used primarily to remove the emulsified oil droplets followed by the removal of total dissolved solids (TDS) via reverse osmosis (RO). The UF membrane was a hydrophilic flat sheet polysulfone ultrafiltration membrane with MWCO of 100 kDa while the RO membrane was a spiral-wound thin-film composite polyamide. Effect of operating conditions such as transmembrane pressure and crossflow velocity were studied in UF pretreatment. The experimental results showed that the UF membrane removed more than 75% of the oil and can be considered as an effective... 

    Optimization of Fluidized Bed Bioreactor (FBBR) for Wastewater Treatment by Pumice Stone

    , M.Sc. Thesis Sharif University of Technology Sharafifar, Milad (Author) ; Borgheei, Mahdi (Supervisor) ; Pak, Ali (Supervisor)

    Photocatalytic Dyes Degradation in Wastewater Using Carbon Nanotube Based Composite Catalyst

    , M.Sc. Thesis Sharif University of Technology Shokrgozar, Atefeh (Author) ; Khorashe, Farhad (Supervisor) ; Baghalha, Morteza (Supervisor) ; Niyaz Mahmoodi, Mohammad (Supervisor)
    Abstract
    Increased photo catalytic activity of NiO and 〖Co〗_3 O_4 were obtained by Ni〖Co〗_2 O_4 synthesizing and supporting functionalized multiwall carbon nano-tubes via calcinations followed by hydrothermal precipitation. NiO, 〖Co〗_3 O_4 and Ni〖Co〗_2 O_4 were prepared in the same procedure exactly for the subsequent photo catalytic activity to be compared to Ni〖Co〗_2 O_4/MWCNT later on. The photo catalytic degradation of Reactive Red 120 dye as a deazo organic pollutant model was used for experimental photo catalytic performance analysis. The CCD method was applied for experimental designing, modeling, and optimizing the operational parameters of the photo catalytic degradation of RR120 using... 

    Predicting the Optimal Operation Pattern of Municipal Wastewater Treatment Plant Using Artificial Intelligence Approaches

    , M.Sc. Thesis Sharif University of Technology Hakimi, Mahdi (Author) ; Torkian, Ayoub (Supervisor)
    Abstract
    With the growth of the population and the significant expansion of industries in the last century, many environmental problems have plagued developed and developing countries. One of these environmental problems is water pollution. Observing the effects of water pollution over time, sanitary and industrial wastewater treatment was proposed as a reliable solution. With technology development, wastewater treatment requirements have become stricter. The increase in energy consumption and wastewater treatment costs due to population growth and industrialization on the one hand and strict regulations, on the other hand, have forced those involved in this field to employ a variety of technical and... 

    Effect of empty bed residence time on biotrickling filter performance: Case study-triethylamine

    , Article International Journal of Environmental Science and Technology ; Vol. 11, issue. 1 , 2014 , pp. 183-190 ; ISSN: 17351472 Mirmohammadi, M ; Bayat, R ; Keshavarzi Shirazi, H ; Sotoudeheian, S ; Sharif University of Technology
    Abstract
    In this study, a laboratory-scale biotrickling filter (BTF) is used to remove Triethylamine (TEA) from gaseous wastes. The BTF is made of stainless steel with a height of 210 cm and an internal diameter of 21 cm packed with lava rocks. TEA elimination pattern was evaluated by changing empty bed residence times (EBRTs). The maximum elimination capacity (EC) has been determined to be 87 g/m3/h. At all EBRTs 52, 31, 20, and 10 s, contaminant transferring from gas phase to liquid was more than the EC. Also, the removal efficiency was 100 % for a mass loading of 100 g/m3/h. While the liquid recirculation velocity of 3.466 m3/m2/h was maintained, the flow rate was adjusted to 60, 100, 156, and 312... 

    Experimental study of forced circulation evaporator in zero discharge desalination process

    , Article Desalination ; Volume 285 , January , 2012 , Pages 352-358 ; 00119164 (ISSN) Farahbod, F ; Mowla, D ; Jafari Nasr, M. R ; Soltanieh, M ; Sharif University of Technology
    Abstract
    Zero discharge desalination process is the most promising technology to prevent salinity and thermal shocks to ecosystem by effluent streams of desalination unit drained into the sea. Pretreatment, solar pond and forced circulation crystallizer are the major steps of one option to provide the purposes of zero discharge desalination process. Reduction of total hardness of wastewater occurs in pretreatment unit and the solar pond is proposed for effluent concentrated brine wastewater of pretreatment unit which seeks production of potable water and concentrated brine. The effluent stream from solar pond is conveyed to one forced circulation evaporator in order to produce salt and distilled... 

    Photocatalytic activity of immobilized geometries of tio2

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 7 , July , 2015 , Pages 2757-2763 ; 10599495 (ISSN) Koohestani, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Photocatalysts that are used for waste water treatment are often suspended in the waste water during processing and then must be removed from the water after treatment. To reduce the post-degradation expenses and time, separation is facilitated by an immobilization process. The effect of immobilized TiO2 geometries on the photocatalytic behavior of the photocatalyst is investigated in this work. Powder, fiber, film, and network-shaped TiO2 nanocatalysts were produced by using different templates. The cellulose fiber and ceramic templates were used as substrates for fiber and film/network geometry production. The products were characterized by x-ray diffraction (XRD),... 

    Determination of discharge coefficient of triangular labyrinth side weirs with one and two cycles using the nonlinear PLS method

    , Article Sustainable Hydraulics in the Era of Global Change - Proceedings of the 4th European Congress of the International Association of Hydroenvironment engineering and Research, IAHR 2016, 27 July 2016 through 29 July 2016 ; 2016 , Pages 653-657 ; 9781138029774 (ISBN) Nekooie, M. A ; Parvaneh, A ; Kabiri Samani, A ; Sharif University of Technology
    CRC Press/Balkema  2016
    Abstract
    Side weirs are hydraulic control structures widely used in irrigation, drainage networks and waste water treatment plants. These structures can be used for adjusting and diverting of flow with minimum energy loss. In spite of many studies were carried out on rectangular side weirs, the studies on oblique and labyrinth side weirs are scarce. In this study, based on the experimental data from more than 210 laboratory tests and through using the multivariable nonlinear partial least square (PLS) method, two nonlinear equations are presented for discharge coefficient CM of triangular labyrinth side weirs with one and two cycles. The obtained empirical equations relating CM with the relevant... 

    Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance

    , Article International Journal of Environmental Science and Technology ; Volume 14, Issue 8 , 2017 , Pages 1615-1624 ; 17351472 (ISSN) Mirmohammadi, M ; Sotoudeheian, S ; Bayat, R ; Sharif University of Technology
    Center for Environmental and Energy Research and Studies  2017
    Abstract
    This study investigated the removal of triethylamine using a biotrickling filter. The influence of affecting parameters, such as height and recirculation liquid rate (VL) on contaminant removal efficiency, was examined in detail. The results demonstrated that in the constant empty bed residence time (EBRT), when VL was increased, the removal efficiency (RE) increased. Also, for a specific VL, increasing EBRT could also increase RE values. However, it seems that an increasing VL is a more cost-effective way to enhance RE as compared to an increasing EBRT. The obtained outcomes represented that for a constant EBRT, an increase in inlet loading (IL) could decrease RE. For lower ILs, the removal... 

    Biodegradation of styrene laden waste gas stream using a compost-based biofilter

    , Article Chemosphere ; Volume 60, Issue 3 , 2005 , Pages 434-439 ; 00456535 (ISSN) Dehghanzadeh, R ; Torkian, A ; Bina, B ; Poormoghaddas, H ; Kalantary, A ; Sharif University of Technology
    Elsevier Ltd  2005
    Abstract
    Biological treatment of waste gas styrene vapor was investigated in a three-stage bench-scale biofilter. Yard waste compost mixed with shredded hard plastics in a 25:75 v/v ratio of plastics:compost was inoculated with thickened municipal activated sludge. Microbial acclimation to styrene was achieved by exposing the system to an inlet concentration (CIn) of 0.25 g m -3 styrene and an empty bed retention time (EBRT) of 360 s for 30 days. Under steady-state conditions, maximum elimination capacity (EC) obtained was 45 g m-3 h-1 at a loading rate (L) of 60 g m -3 h-1 (CIn of 2 g m-3 and EBRT of 120 s). Reduction of retention time adversely impacted the performance resulting in the maximum EC... 

    Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation

    , Article Applied Catalysis A: General ; Volume 643 , 2022 ; 0926860X (ISSN) Padervand, M ; Ghasemi, S ; Hajiahmadi, S ; Rhimi, B ; Nejad, Z. G ; Karima, S ; Shahsavari, Z ; Wang, C ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Over the past few decades, biological hazards and organic pollution have become major environmental concerns. Photocatalysis has been found to be effective in minimizing the negative impacts of these issues in air and water. Lozenge shape Ag/AgCl/ZnTiO3 photocatalysts were fabricated by a facile two-step synthesis method, including hydrothermal and coprecipitation. The physicochemical characteristics and morphological properties of the structures were comprehensively described taking advantage of a multi-technique approach. The prepared photocatalysts offered excellent nitrophenol mineralization (>90%) after 90 min of visible light irradiation. Based on the spin-trapping ESR technique, •O2̅–... 

    Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions

    , Article Biochemical Engineering Journal ; Volume 67 , 2012 , Pages 208-217 ; 1369703X (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Barati, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The kinetics of bioleaching of Mo, Ni, and Al from spent hydrocracking catalyst, using Aspergillus niger was studied. The four most effective bioleaching variables were selected in accordance with the Plackett-Burman design and were further optimized via central composite design (CCD). The optimal values of the variables for maximum multi-metal bioleaching were as follows: particle size 150-212. μm, sucrose 93.8. g/L, pulp density 3%. w/v, and pH 7. The maximum metal recoveries corresponding to these conditions were 99.5 ± 0.4% Mo, 45.8 ± 1.2% Ni, and 13.9 ± 0.1% Al. The relatively low Ni extraction was attributed to the precipitation of Ni in the presence of oxalic acid. Under the optimal... 

    Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis(2-aminonicotinato) zinc (II)

    , Article Cuihua Xuebao/Chinese Journal of Catalysis ; Volume 36, Issue 5 , May , 2015 , Pages 742-749 ; 02539837 (ISSN) Bijanzad, K ; Tadjarodi, A ; Akhavan, O ; Sharif University of Technology
    Science Press  2015
    Abstract
    Hollow microblocks of [Zn(anic)2], as a novel coordination compound, were synthesized using 2-aminonicotinic acid (Hanic) and zinc (II) nitrate tetrahydrate. The chemical composition of the zinc complex, ZnC12H10N4O4, was determined by Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The synthesized zinc complex was used as a precursor to produce ZnO nanostructures by calcination at 550 °C for 4 h. Morphological studies by scanning electron microscopy and transmission electron microscopy revealed the formation of porous microbricks of ZnO nanoparticles. N2 adsorption-desorption analysis showed that the...