Loading...
Search for: water-injection
0.015 seconds
Total 138 records

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Vol. 28, issue. 9 , Mar , 2009 , p. 892-902 ; ISSN: 10916466 Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. , H ; Sharif University of Technology
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Prediction of asphaltene precipitation during solvent/CO2 injection conditions: A comparative study on thermodynamic micellization model with a different characterization approach and solid model

    , Article Journal of Canadian Petroleum Technology ; Volume 50, Issue 3 , 2011 , Pages 65-74 ; 00219487 (ISSN) Tavakkoli, M ; Masihi, M ; Ghazanfari, M. H ; Kharrat, R ; Sharif University of Technology
    Abstract
    There are different thermodynamic models that have been applied for modelling of asphaltene precipitation caused by various reasons, such as solvent/CO2 injection and pressure depletion. In this work, two computer codes based on two different asphaltene precipitation thermodynamic models-the first being the thermodynamic micellization model with a different characterization approach and the second being the solid model-have been developed and used for predicting asphaltene precipitation data reported in the literature as well as in the obtained data for Sarvak reservoir crude, which is one of the most potentially problematic Iranian heavy oil reserves under gas injection conditions. For the... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Volume 28, Issue 9 , Apr , 2010 , Pages 892-902 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Experimental and computer based simulation study of WAG process

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Taheri, S ; Kharrat, R ; Ghazanfari, M. H ; Khodabakhsh, M ; Sharif University of Technology
    2006
    Abstract
    In reservoirs that have been water flooded or gas injected, it is still a significant amount of the remaining oil. Water alternative gas injection is a tertiary oil recovery method which was used for the first time in Canada for recovering remained oil in place of reservoir. The pore-scale mechanisms of this process are not fully understood yet. Such knowledge is essential for accurate modelling of reservoir. In this study various experiments on the WAG process is carried out by means of high pressure glass type micromodel instrument. The micromodel apparatus in this experiment was capable to operate at pressures up to 3500 Psi and temperatures up to 85°C which is similar to conventional... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Vol. 29, issue. 3 , Sep , 2009 , p. 290-300 ; ISSN: 10916466 Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Recovery improvement using water and gas injection scenarios

    , Article Petroleum Science and Technology ; Volume 29, Issue 3 , 2011 , Pages 290-300 ; 10916466 (ISSN) Tafty, M. F ; Masihi, M ; Momeni, A ; Sharif University of Technology
    Abstract
    Water and miscible gas injection scenarios are considered in an Iranian oil reservoir for the purpose of recovery improvement. Firstly reservoir fluid modeling and modeling of a slim tube test were performed. Then, water alternating gas (WAG) injection was evaluated by optimizing the WAG half cycle and WAG ratio. Alternatively, hybrid WAG and separate injection of water and gas in the top and bottom of the reservoir were also investigated. The numerical simulation results showed that the optimum WAG, with half cycle of 1.5 years and WAG ratio of one, gave the highest recovery factor. Moreover, economic evaluation of these scenarios indicated that WAG had the highest net present value and was... 

    Intelligent model for prediction of CO2 - Reservoir oil minimum miscibility pressure

    , Article Fuel ; Volume 112 , 2013 , Pages 375-384 ; 00162361 (ISSN) Shokrollahi, A ; Arabloo, M ; Gharagheizi, F ; Mohammadi, A. H ; Sharif University of Technology
    2013
    Abstract
    Multiple contact miscible floods such as injection of relatively inexpensive gases into oil reservoirs are considered as well-established enhanced oil recovery (EOR) techniques for conventional reservoirs. A fundamental factor in the design of gas injection project is the minimum miscibility pressure (MMP), whereas local sweep efficiency from gas injection is very much dependent on the MMP. Slim tube displacements, and rising bubble apparatus (RBA) are two main tests that are used for experimentally determination of MMP but these tests are both costly and time consuming. Hence, searching for quick and accurate mathematical determination of gas-oil MMP is inevitable. The objective of this... 

    Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 137 , 2016 , Pages 134-143 ; 09204105 (ISSN) Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Gas injection process for more oil recovery and in particular CO2 injection is well-established method to increment oil recovery from underground oil reservoirs. CO2 sequestration which takes place during this enhanced oil recovery (EOR) method has positive impact on reducing the greenhouse gas emission which causes global warming. Direct gas injection into depleted oil reservoirs, encounters several shortcomings such as low volumetric sweep efficiency, early breakthrough (BT) and high risk of gas leakage in naturally fractured carbonate oil reservoirs. Carbonated water injection (CWI) has been recently proposed as an alternative method to alleviate the problems associated with gas... 

    The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock

    , Article Chinese Journal of Chemical Engineering ; 2018 ; 10049541 (ISSN) Shakiba, M ; Riazi, M ; Ayatollahi, S ; Takband, M ; Sharif University of Technology
    Chemical Industry Press  2018
    Abstract
    Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery... 

    The impact of connate water saturation and salinity on oil recovery and CO2 storage capacity during carbonated water injection in carbonate rock

    , Article Chinese Journal of Chemical Engineering ; Volume 27, Issue 7 , 2019 , Pages 1699-1707 ; 10049541 (ISSN) Shakiba, M ; Riazi, M ; Ayatollahi, S ; Takband, M ; Sharif University of Technology
    Chemical Industry Press  2019
    Abstract
    Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery... 

    Experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; 2012 , Pages 3914-3918 ; 9781629937908 (ISBN) Shahrokhi, O ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    This work concerns with experimental investigation of CO2 WAG injection to light crude oil in near miscible conditions which has been rarely attended in the available literature. Here, several core flood experiments at three constant injection rates and four WAG ratios are conducted on sandstone rocks saturated with light crude oil in presence of saline water. The results showed that higher injection rate has a better performance regarding oil recovery for smaller PVs of injected fluids, while lower injection rate showed higher ultimate recovery for a 30% increase in injected PVs. Secondary continuous gas injection showed a superior performance than all the other WAG injections in different... 

    A coupled geochemical and fluid flow model to simulate permeability decline resulting from scale formation in porous media

    , Article Applied Geochemistry ; Volume 107 , 2019 , Pages 131-141 ; 08832927 (ISSN) Shabani, A ; Kalantariasl, A ; Abbasi, S ; Shahrabadi, A ; Aghaei, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Scale precipitation due to the mixing of incompatible injected water with formation brine and its subsequent deposition in porous media is an unpleasant phenomenon in water injection projects that can lead to severe injectivity and productivity decline. As a result of the complexity of geochemical reactions, modelling scale precipitation and deposition is a challenge. This paper presents a coupled geochemical and fluid flow model to simulate reactive flow in porous media which models pressure difference increase resulting from scale formation during water injection into porous media. To simulate chemical reactions during scale formation and subsequent rock permeability decline, PHREEQC... 

    Geochemical and hydrodynamic modeling of permeability impairment due to composite scale formation in porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 176 , 2019 , Pages 1071-1081 ; 09204105 (ISSN) Shabani, A ; Kalantariasl, A ; Parvazdavani, M ; Abbasi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Injectivity decline due to mineral scale deposition in near wellbore region of water injection wells is one of the main challenging issues and have been widely reported in the literature. One of the main mechanisms of injectivity loss is incompatibility between injected and formation waters that may result in inorganic scale precipitation and subsequent deposition in porous media. Reliable reactive flow models to predict type and amount of scale along with permeability decline estimation allow planning and risk management of water flood projects. In this paper, we present a coupled geochemical and hydrodynamic model to simulate the scale precipitation and deposition of mineral scales in... 

    A reactive transport approach for modeling scale formation and deposition in water injection wells

    , Article Journal of Petroleum Science and Engineering ; Volume 190 , 2020 Shabani, A ; Sisakhti, H ; Sheikhi, S ; Barzegar, F ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Petroleum industry is moving toward enhancing oil recovery methods, especially water-based methods, including low salinity and smart water flooding which water with an optimized composition is injected into the reservoir for improving oil recovery. Injection of water into the target formation is also a common operation in geothermal energy production. As the water is being injected into the reservoir, pressure and temperature change along the well column and cause scale formation. Mineral scale precipitation and deposition is a common problem for water injection wells which reduces the effective radius of the wellbore and affects the injection efficiency. In this paper, modeling scale... 

    Performance of near-miscible simultaneous water and CO2 injection for oil recovery in secondary and tertiary modes

    , Article 76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014 ; Nov , 2014 , p. 1007-1011 Seyyedsar, S. M ; Ghazanfari, M. H ; Taghikhani, V ; Sharif University of Technology
    Abstract
    Simultaneous water and CO2 injection has been performed on a sandstone core to evaluate oil recovery under the secondary and tertiary near-miscible injection modes. It is demonstrated that secondary SWACO2 injection as well as tertiary flood is an effective method for the oil/residual oil recovery from oil saturated/water-flooded porous media. In the secondary SWACO2 injection, the ultimate oil recovery increases by increasing SWAG ratio from 0.2 to 0.4 but due to some limits, e.g. topological effects, prohibiting contacting of injected gas with residual oil in pores, altering SWAG ratio from 0.4 to 0.6 showed no effect on ultimate oil recovery. Secondary SWACO2 injection can recover higher... 

    Investigating the efficiency of MEOR processes using Enterobacter cloacae and Bacillus stearothermophilus SUCPM#14 (biosurfactant-producing strains) in carbonated reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 113 , January , 2014 , Pages 46-53 ; ISSN: 09204105 Sarafzadeh, P ; Niazi, A ; Oboodi, V ; Ravanbakhsh, M ; Hezave, A. Z ; Ayatollahi, S ; Raeissi, S ; Sharif University of Technology
    Abstract
    Microbial enhanced oil recovery (MEOR) process is divided into two main categories, namely in-situ and ex-situ techniques. It utilizes reservoir microorganisms or specially selected bacteria to use their metabolites for more oil recovery from depleted oil reservoirs. In the present study, the potential of two biosurfactant-producing strains of Enterobacter cloacae and Bacillus stearothermophilus SUCPM#14 were investigated on tertiary oil recovery efficiency in carbonated cores using different designed injection protocols. The required operational time, process cost and proper selection of bacterial formulation during the MEOR process were the main objectives of this study. The results of... 

    An improvement on modeling of forced gravity drainage in dual porosity simulations using a new matrix-fracture transfer function

    , Article Transport in Porous Media ; Volume 94, Issue 1 , 2012 , Pages 207-223 ; 01693913 (ISSN) Samimi, S. E ; Masihi, M ; Gerami, S ; Ghazvini, M. G ; Sharif University of Technology
    Abstract
    In fractured oil reservoirs, the gravity drainage mechanism has great potentials to higher oil recovery in comparison with other mechanisms. Recently, the forced gravity drainage assisted by gas injection has also been considered; however, there are few comprehensive studies in the literature. Dual porosity model, the most common approach for simulation of fractured reservoirs, uses transfer function concept to represent the fluid exchange between matrix and its neighborhood fractures. This study compares the results of different available transfer functions with those of fine grid simulations when forced gravity drainage contributes to oil production from a single matrix block. These... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Effect of SO4 −2 ion exchanges and initial water saturation on low salinity water flooding (LSWF) in the dolomite reservoir rocks

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 6 , 2020 , Pages 841-855 Safavi, M. S ; Masihi, M ; Safekordi, A. A ; Ayatollahi, S ; Sadeghnejad, S ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    The low salinity water injection has become one of the most important studies in the oil industry for improving oil recovery compared to conventional seawater injection. Thus, extensive studies have been conducted in carbonate and sandstone reservoirs to investigate how the physical properties of rocks and the chemical composition of fluids influence low salinity effect, while, the carbonate reservoir rocks requires more investigation of the effect of molecular and/or ionic interactions. In this experimental work, the effectiveness of various water flooding schemes in carbonate reservoir rock samples is investigated. In this regard, the oil recovery potential of seawater (SW), reservoir... 

    The impact of CO2 injection and pressure changes on asphaltene molecular weight distribution in a heavy crude oil: An experimental study

    , Article Petroleum Science and Technology ; Volume 28, Issue 17 , 2010 , Pages 1728-1739 ; 10916466 (ISSN) Sadeqimoqadam, M ; Firoozinia, H ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    This work concerns observing the pressure as well as CO2 mole percentage effects on asphaltene molecular weight distributions at reservoir conditions. A high-pressure, high-temperature asphaltene measurement setup was applied, and the amount of precipitated asphaltene at different pressures as well as CO2 mole percentage in an Iranian heavy crude oil was measured. Moreover, the asphaltene molecular weight distributions during titration of crude oil with different n-alkanes were investigated. The gel permeation chromatography (GPC) apparatus was used for characterization of asphaltene molecular weight under different conditions. It has been observed that some thermodynamic changes such as...