Loading...
Search for: well-flooding
0.005 seconds
Total 160 records

    Mechanistic study of wettability alteration of oil-wet calcite: The effect of magnesium ions in the presence and absence of cationic surfactant

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 482 , October , 2015 , Pages 403-415 ; 09277757 (ISSN) Karimi, M ; Al Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Over 60% of the world's discovered oil reserves are held in carbonate reservoirs, which are mostly naturally fractured. Conventional water flooding results in low oil recovery efficiency in these reservoirs as most of them are oil-wet. On account of negative capillary forces, injected brine cannot penetrate simply into an oil-wet matrix of fractured formations to force the oil out. Wettability alteration of the rock surface to preferentially more water-wet state has been extensively studied using both smart water and surfactants separately. This study aims to study the effects of Mg2+ as one of the most important wettability influencing ions on the wetting properties of oil-wet carbonate... 

    Effects of low salinity water on calcite/brine interface: a molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 537 , January , 2018 , Pages 61-68 ; 09277757 (ISSN) Koleini, M. M ; Fattahi Mehraban, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Calcite is among the most abundant minerals organizing the oil reservoir formation and therefore its surface properties play a central role in the increase of the oil recovery efficiency. The effect of low-salinity water in carbonate rocks reveals that brine composition and salinity can improve the oil recovery in carbonates through wettability alteration. However, the specific mechanism for wettability changes that leads to improved oil recovery in calcite is not well understood. To obtain deeper insights at atomic level into the understanding the characteristics of the calcite-water interface, we performed classical molecular dynamics simulations in the presence of different ions in brine... 

    Experimental investigation of secondary and tertiary oil recovery from fractured porous media

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 3, Issue 3 , September , 2013 , Pages 179-188 ; 21900558 (ISSN) Maroufi, P ; Ayatollahi, S ; Rahmanifard, H ; Jahanmiri, A ; Riazi, M ; Sharif University of Technology
    2013
    Abstract
    Naturally fractured reservoirs (NFRs) contribute in large extent to oil and gas production to the ever increasing market demand of fossil energy. It is believed that the vertical displacement of oil during gas injection assisted by gravity drainage (GAGD) is one of the most efficient methods for oil recovery in these reservoirs. Hence, in this work, unconsolidated packed models of cylindrical geometry surrounded by fracture were utilized in order to perform a series of flow visualization experiments during which the contribution of different parameters such as the extent of matrix permeability, physical properties of oil (viscosity, density, and surface tension) and the withdrawal rate was... 

    Application of multi-criterion robust optimization in water-flooding of oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 109 , September , 2013 , Pages 1-11 ; 09204105 (ISSN) Yasari, E ; Pishvaie, M. R ; Khorasheh, F ; Salahshoor, K ; Kharrat, R ; Sharif University of Technology
    2013
    Abstract
    Most of the reported robust and non-robust optimization works are formulated based on a single-objective optimization, commonly in terms of net present value. However, variation of economical parameters such as oil price and costs forces such high computational optimization works to regenerate their optimum water injection policies. Furthermore, dynamic optimization strategies of water-flooding often lack robustness to geological uncertainties. This paper presents a multi-objective while robust optimization methodology by incorporating three dedicated objective functions. The goal is to determine optimized and robust water injection policies for all injection wells. It focuses on reducing... 

    Experimental and numerical investigation of polymer flooding in fractured heavy oil five-spot systems

    , Article Journal of Petroleum Science and Engineering ; Volume 108 , 2013 , Pages 370-382 ; 09204105 (ISSN) Sedaghat, M. H ; Ghazanfari, M. H ; Masihi, M ; Rashtchian, D ; Sharif University of Technology
    2013
    Abstract
    Microscopic and macroscopic displacements of polymer flooding to heavy oil at various levels of salinity and connate water saturation have been investigated. Both oil-wet and water-wet conditions in fractured five-spot micromodel systems, initially saturated with the heavy crude oil are utilized. The primary contribution is to examine the role of salinity, wettability, connate water, and fracture geometry in the recovery efficiency of the system. The microscopic results revealed that the increase in the connate water saturation decreases the oil recovery, independent of the wettability conditions. Moreover, the increase in salinity of the injected fluids lowers the recovery efficiency due to... 

    Experimental study of polymer flooding in fractured systems using five-spot glass micromodel: The role of fracture geometrical properties

    , Article Energy Exploration and Exploitation ; Volume 30, Issue 5 , 2012 , Pages 689-706 ; 01445987 (ISSN) Abedi, B ; Ghazanfari, M ; Kharrat, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Water flooding is being widely used in the petroleum industry and has been considered as a simple inexpensive secondary recovery method. But in fractured formations, existence of fracture system in reservoir rock induces an adverse effect on oil recovery by water flooding. Polymer flooding has been successfully applied as an alternative enhanced oil recovery method in fractured formations. But, the role of fracture geometrical properties on macroscopic efficiency of polymer flooding is not yet well-understood, especially in fractured five-spot systems. In this work five-spot glass micromodel, because of micro-visibility, ease of multiple experimentations and also presence of the unexplored... 

    A numerical comparative study of various flooding techniques in hydrocarbon reservoirs

    , Article Journal of Porous Media ; Volume 15, Issue 2 , 2012 , Pages 101-112 ; 1091028X (ISSN) Naderan, H ; Manzari, M. T ; Hannani, S. K ; Sharif University of Technology
    2012
    Abstract
    This paper investigates the efficiency and performance of several of the fiooding techniques popular in secondary and enhanced oil recovery. These processes include water fiooding, immiscible and miscible gas fiooding, and several forms of water-alternating-gas (WAG) injection. The study is carried out numerically on a typical one-dimensional domain using an advanced high-resolution central scheme. Some performance indices such as oil cut drop, breakthrough time, and sweep efficiency were employed to evaluate the appropriateness of each injection strategy  

    Preliminary considerations on the application of toe-to-heel steam flooding (THSF): Injection well-producer well configurations

    , Article Chemical Engineering Research and Design ; Volume 89, Issue 11 , 2011 , Pages 2365-2379 ; 02638762 (ISSN) Mobeen Fatemi, S ; Yadali Jamaloei, B ; Sharif University of Technology
    Abstract
    This work examines the operational parameters that may influence the performance of toe-to-heel steamflooding in a laboratory-scale simulation model built on the basis of the fluid and rock samples from a fractured, low-permeable, carbonate heavy oil reservoir in Southwestern Iran, called KEM (Kuh-e-Mond). Using vertical (V) or horizontal (H) injectors (I) and producers (P), the effects of different well configurations including VIVP, VIHP, 2VIHP, VI2HP, HIHP, and HI2HP, injectors' traversal distance, producers' traversal distance, and horizontal producer length have been investigated. In summary, the results show that 2VIHP scheme performs best in terms of oil recovery and areal/volumetric... 

    Visual investigation and modeling of asphaltene precipitation and deposition during CO2 miscible injection into oil reservoirs

    , Article Fuel ; Volume 160 , 2015 , Pages 132-139 ; 00162361 (ISSN) Zanganeh, P ; Dashti, H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Miscible carbon dioxide (CO2) flooding has become the most commonly and favorable approach in Enhanced Oil Recovery (EOR) because of its high oil reservoir sweep efficiency and contribution to the reduction of greenhouse gas emissions. Despite this, it can significantly favor the asphaltene deposition, which leads to the wettability reversal and formation damage. A novel experimental setup was utilized to study asphaltene deposition on the model rock at reservoir condition. The evolution of asphaltene deposition was monitored by a microscope; then analyzed by image processing software to check the amount of deposited asphaltene and its size distribution at different... 

    Solar generated steam injection in HAMCA, Venezuelan extra heavy oil reservoir; Simulation study for oil recovery performance, economical and environmental feasibilities

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; 2015 , Pages 1176-1202 ; 9781510811621 (ISBN) Mirzaie Yegane, M ; Ayatollahi, S ; Bashtani, F ; Romero, C ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Application of solar energy compared to conventional gas-burning boilers for steam generation in thermal Enhanced Oil Recovery processes is a newly attended technology, which brings significant benefits to the petroleum industry through environmental and economical aspects. This technique is especially designed for the regions in which gas-burning steam generation is not viable in large scale. The objective of this study is to investigate about viability of using solar energy to generate steam instead of using conventional steam generators in a Venezuelan extra heavy oil reservoir. Limited gas production policy of the Venezuelan government is the major challenge for utilizing gas steam... 

    Wettability modification, interfacial tension and adsorption characteristics of a new surfactant: Implications for enhanced oil recovery

    , Article Full ; Volume 185 , 2016 , Pages 199-210 ; 00162361 (ISSN) Arabloo, M ; Ghazanfari, M. H ; Rashtchian, D ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    This paper concerns with the interfacial tension (IFT), wettability modification and adsorption behavior of a new plant-based surface active agent, Zizyphus Spina Christi, onto sandstone minerals which has been rarely attended in the available literature. Both kinetics and equilibrium adsorption data were obtained from batch mode tests. It was revealed that Freundlich isotherms matched better fit to the equilibrium data which implied that multilayer coverage of Zizyphus Spina Christi onto the sandstone particle surfaces was more likely to occur. Analysis of experimental kinetic data based on intraparticle diffusion model disclosed that the intraparticle diffusion mechanism is not the only... 

    Impact of sulfate ions on wettability alteration of oil-wet calcite in the absence and presence of cationic surfactant

    , Article Energy and Fuels ; Volume 30, Issue 2 , 2016 , Pages 819-829 ; 08870624 (ISSN) Karimi, M ; Al-Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    The modification of the surface wetting characteristics in fractured oil-wet carbonate reservoirs, by reversing wettability from oil-wet to water-wet, leads to improved oil recovery. However, in order to obtain a successful oil recovery process, it is crucial to understand the active mechanisms of wettability alteration. This study looks at the effect of sulfate ions as one of the most promising wettability influencing ions on the wetting properties of oil-wet calcite; the effect is studied both with and without the presence of cationic surfactant and possible mechanisms of wettability alteration are explored. A number of analytical techniques were utilized to analyze the mineral surface... 

    Accurate determination of the CO2-crude oil minimum miscibility pressure of pure and impure CO2 streams: A robust modelling approach

    , Article Canadian Journal of Chemical Engineering ; Volume 94, Issue 2 , 2016 , Pages 253-261 ; 00084034 (ISSN) Hemmati Sarapardeh, A ; Ghazanfari, M. H ; Ayatollahi, S ; Masihi, M ; Sharif University of Technology
    Wiley-Liss Inc 
    Abstract
    Gas flooding processes have emerged as attractive enhanced oil recovery (EOR) methods over the last few decades. Among different gas flooding processes, CO2 flooding is recognized as being most efficient for displacing oil through miscible displacement. Minimum miscibility pressure (MMP) is a crucial parameter for successfully designing CO2 flooding, which is traditionally measured through time-consuming, expensive, and cumbersome experiments. In the present study, a new reliable model based on feed-forward artificial neural networks was presented to predict both pure and impure CO2-crude oil MMP. Among various properties and parameters, reservoir temperature, reservoir oil composition, and... 

    Comparing different scenarios for thermal enhanced oil recovery in fractured reservoirs using hybrid solar-gas steam generators, a simulation study

    , Article Society of Petroleum Engineers - SPE Europec Featured at 78th EAGE Conference and Exhibition, 30 May 2016 through 2 June 2016 ; 2016 ; 9781613994573 (ISBN) Mirzaie Yegane, M ; Bashtani, F ; Tahmasebi, A ; Ayatollahi, S ; Al Wahaibi, Y. M ; Sharif University of Technology
    Society of Petroleum Engineers  2016
    Abstract
    The application of the renewable energy sources, especially solar energy, for thermal enhanced oil recovery methods as an economical and environmental valuable technique has received many attractions recently. Concentrated Solar Power systems are capable of producing substantial quantities of steam by means of focused sunlight as the heat source for steam generation. This paper aims to investigate viability of using this innovative technology in fractured reservoirs to generate steam instead of using conventional steam generators. A synthetic fractured reservoir with properties similar to those of giant carbonate oil reserves in the Middle East was designed by using commercial thermal... 

    Numerical analysis of heat conduction treated with highly conductive copper oxide nanoparticles In porous media

    , Article Special Topics and Reviews in Porous Media ; Volume 7, Issue 2 , 2016 , Pages 149-160 ; 21514798 (ISSN) Rokhforouz, M. R ; Rabbani, A ; Ayatollahi, S ; Taghikhani, V ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    In this paper, the effect of highly conductive copper oxide nanoparticles on the effective thermal conductivity (ETC) of rock samples was mathematically investigated. To solve the governing conservation equations for the ETC a commercial finite element package (COMSOL Multiphysics) was used. It should be stressed that the single-phase approach was employed to mathematically model the effect of nanofluid on the heat transfer improvement. The computational geometry of the rock samples was obtained by analyzing the microscopic images of the limestone rock samples. The results obtained from the mathematical modeling of the rock samples showed that the conductive heat transfer through porous... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control

    , Article Chemical Engineering Research and Design ; Volume 111 , 2016 , Pages 449-460 ; 02638762 (ISSN) Farhadi, H ; Riahi, S ; Ayatollahi, S ; Ahmadi, H ; Sharif University of Technology
    Institution of Chemical Engineers  2016
    Abstract
    CO2 injection has proved to be the most common and efficient enhanced oil recovery techniques which leads to more residual oil recovery. Unfavorable sweep efficiency which results in fingering propagation and causes early gas breakthrough is the most challenging issue of gas flooding process. The aim of this work is to study foam stability and analyze the mobility of CO2 foam stabilized by mixture of raw silica nanoparticles and ethyl hexadecyl dimethyl ammonium bromide (cationic surfactant). The result is obtained through both dynamic and static techniques using a new adsorption index.NPS-stabilized foams are generated using Ross-Miles method. A novel index for the adsorption of surfactant... 

    Potential application of silica nanoparticles for wettability alteration of oil-wet calcite: A mechanistic study

    , Article Energy and Fuels ; Volume 30, Issue 5 , 2016 , Pages 3947-3961 ; 08870624 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Oil recovery from carbonate reservoirs can be enhanced by altering the wettability from oil-wet toward water-wet state. Recently, silica nanoparticle (SNP) suspensions are considered as an attractive wettability alteration agent in enhanced oil recovery applications. However, their performance along with the underlying mechanism for wettability alteration in carbonate rocks is not well discussed. In this work, the ability of SNP suspensions, in the presence/absence of salt, to alter the wettability of oil-wet calcite substrates to a water-wet condition was investigated. In the first step, to ensure that the properties of nanofluids have not been changed during the tests, stability analysis... 

    High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships

    , Article Colloid and Polymer Science ; Volume 294, Issue 3 , 2016 , Pages 513-525 ; 0303402X (ISSN) Tamsilian, Y ; Ramazani S. A ; Shaban, M ; Ayatollahi, S ; Tomovska, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    High molecular weight polyacrylamide (PAM) nanoparticle dispersions are products with wide application possibilities, the most important of which is in petroleum industry such as drilling fluid and flooding agent in enhanced oil recovery. For that aim, it is necessary to achieve complete control of the final dispersion and polymer properties during the synthesis step. In this work, PAMs were synthesized by inverse emulsion polymerization of aqueous acrylamide solution in cyclohexane in the presence of emulsifier mixture of Span 20 and Span 80. We present a comprehensive study of the effects of variation of all important reaction conditions (agitation rate, reaction time and temperature,... 

    Performance of sea water dilution on the surface free energies of the crude oils in water-flooded carbonate rock

    , Article Journal of Adhesion Science and Technology ; 2017 , Pages 1-10 ; 01694243 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Although several investigations have studied the low-salinity water injection (LSWI) performance during the past decades, the effect of crude oil type on the interfacial tension (IFT) and wettability alteration is still in dark. In this regard, this study is aimed to obtain the thermodynamic energies including adhesion, cohesion and spreading coefficient during LSWI. To achieve this goal, IFT and static contact angle values of three different crude oils (i.e. light, medium and heavy) are measured as a function of sea water salinity. The obtained results revealed that the dilution of sea water can change the wettability of reservoir rock from oil wet state towards water wet state, while crude...