Loading...
Search for: wettability-alteration
0.01 seconds
Total 107 records

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; 2020 Alizadeh, M. R ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: Pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial...