Loading...
Search for: wettability-alteration
0.016 seconds
Total 107 records

    Mechanistic study of the effects of dynamic fluid/fluid and fluid/rock interactions during immiscible displacement of oil in porous media by low salinity water: Direct numerical simulation

    , Article Journal of Molecular Liquids ; Volume 322 , 2021 ; 01677322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity waterflooding (LSWF) is a process in which by lowering the ionic strength and/or manipulation of the composition of the injection water, the long term equilibrium in oil/brine/rock system is disturbed to reach a new state of equilibrium through which the oil production will be enhanced due to fluid/fluid and/or rock/fluid interactions. In spite of recent advances in the simulation of the LSWF at core scale and beyond, there are very few works that have modelled and simulated this process at the pore scale specially using direct numerical simulation (DNS). As a result the effects of wettability alteration and/or Interfacial Tension (IFT) change on the distribution of the phases... 

    Mechanistic study of wettability alteration of oil-wet calcite: The effect of magnesium ions in the presence and absence of cationic surfactant

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 482 , October , 2015 , Pages 403-415 ; 09277757 (ISSN) Karimi, M ; Al Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Over 60% of the world's discovered oil reserves are held in carbonate reservoirs, which are mostly naturally fractured. Conventional water flooding results in low oil recovery efficiency in these reservoirs as most of them are oil-wet. On account of negative capillary forces, injected brine cannot penetrate simply into an oil-wet matrix of fractured formations to force the oil out. Wettability alteration of the rock surface to preferentially more water-wet state has been extensively studied using both smart water and surfactants separately. This study aims to study the effects of Mg2+ as one of the most important wettability influencing ions on the wetting properties of oil-wet carbonate... 

    Microorganisms’ effect on the wettability of carbonate oil-wet surfaces: implications for MEOR, smart water injection and reservoir souring mitigation strategies

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 10, Issue 4 , 2020 , Pages 1539-1550 Jahanbani Veshareh, M ; Ayatollahi, S ; Sharif University of Technology
    Springer  2020
    Abstract
    In upstream oil industry, microorganisms arise some opportunities and challenges. They can increase oil recovery through microbial enhanced oil recovery (MEOR) mechanisms, or they can increase production costs and risks through reservoir souring process due to H2S gas production. MEOR is mostly known by bioproducts such as biosurfactant or processes such as bioclogging or biodegradation. On the other hand, when it comes to treatment of reservoir souring, the only objective is to inhibit reservoir souring. These perceptions are mainly because decision makers are not aware of the effect microorganisms’ cell can individually have on the wettability. In this work, we study the individual effect... 

    Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 953-963 ; 09307516 (ISSN) Behesht, M ; Roostaazad, R ; Farhadpour, F ; Pishvaei, M. R ; Sharif University of Technology
    2008
    Abstract
    A three-dimensional multi-component transport model in a two-phase oil-water system was developed. The model includes separated terms to account for the dispersion, convection, injection, growth and death of microbes, and accumulation. For the first time, effects of both wettability alteration of reservoir rock from oil wet to water wet and reduction in interfacial tension (IFT) simultaneously on relative permeability and capillary pressure curves were included in a MEOR simulation model. Transport equations were considered for the bacteria, nutrients, and metabolite (bio-surfactant) in the matrix, reduced interfacial tension on phase trapping, surfactant and polymer adsorption, and effect... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Monitoring the influence of dispersed nano-particles on oil-water relative permeability hysteresis

    , Article Journal of Petroleum Science and Engineering ; Vol. 124, issue , December , 2014 , p. 222-231 ; ISSN: 09204105 Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In recent years, polysilicon nanoparticles are used to enhance the oil recovery through the water injection process in oilfields. The contributing mechanisms are the reduction of interfacial tension and wettability alteration which lead to improving or decreasing the oil phase relative permeability and can be traced by change of relative permeability curves. However, profound understanding of the effect of dispersed nano-silica particles on the hysteretic behavior of relative permeability curves remains a controversy topic in the literature.The current study illustrates the influence of dispersed silica particles on hysteretic trend of two-phase curves of oil-water relative permeability.... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Vol. 40, issue , July , 2012 , p. 168-176 ; ISSN: 08941777 Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Volume 40 , July , 2012 , Pages 168-176 ; 08941777 (ISSN) Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    2012
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Nanotechnology-assisted EOR techniques: New solutions to old challenges

    , Article Society of Petroleum Engineers - SPE International Oilfield Nanotechnology Conference 2012 ; 2012 , Pages 382-396 ; 9781622761104 (ISBN) Ayatollahi, S ; Zerafat, M. M ; Sharif University of Technology
    SPE  2012
    Abstract
    Enhanced Oil Recovery techniques are gaining more attention worldwide as the proved oil reserves are declining and the oil price is hiking. Although many giant oil reservoirs in the world were already screened for EOR processes, the main challenges such as low sweep efficiency, costly techniques, possible formation damages, transportation of huge amounts of EOR agents to the fields especially for offshore cases, analyzing micro-scale multi-phase flow in the rock to the large scale tests and the lack of analyzing tools in traditional experimental works, hinder the proposed EOR processes. Our past experiences on using nanotechnology to the upstream cases, especially EOR processes, revealed... 

    Numerical simulation of surfactant flooding in darcy scale flow

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 11 , 2014 , Pages 1365-1374 ; ISSN: 10916466 Morshedi, S ; Foroughi, S ; Beiranvand, M. S ; Sharif University of Technology
    Abstract
    One of the methods that is used nowadays in enhanced oil recovery is surfactant flooding. The main mechanisms of surfactant flooding in reservoir consist of reduction of interfacial tension between water and oil and modification of rock wettability. In this study, the authors simulate the surfactant injection process in Darcy scale and in one-dimensional, multicomponent, multiphase state, and effects of physical phenomena such as adsorption, dispersion, convection, and exchange between fluids and solids are considered. Wettability alteration of reservoir rock due to presence of surfactant in injected fluid is detected in relative permeability and capillary pressure curves. First, the authors... 

    On the size-dependent behavior of drop contact angle in wettability alteration of reservoir rocks to preferentially gas wetting using nanofluid

    , Article Journal of Petroleum Science and Engineering ; Volume 178 , 2019 , Pages 1143-1154 ; 09204105 (ISSN) Azadi Tabar, M ; Ghazanfari, M. H ; Dehghan Monfared, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Wettability alteration of rock surfaces toward gas wetting have been recognized as a practical approach for maximizing the production from the gas condensate reservoirs. Most of the reported work in this area applied the so called sessile drop contact angle measurement technique to examine the change in wetting state of a surface. However, the size-dependent wetting behavior of drop which could affect the exact determination of wettability and wettability changes was not well discussed in the previous studies. Therefore, in this work, the size dependency of contact angle for four different liquid-solid-gas systems; i.e., water-calcite-air, water-treated calcite-air (nanofluid treated... 

    Optimization assisted asphaltene deposition modeling in porous media during a natural depletion scheme

    , Article Petroleum Science and Technology ; Volume 30, Issue 9 , Mar , 2012 , Pages 958-965 ; 10916466 (ISSN) Hematfar, V ; Bagheri, M ; Kharrat, R ; Ghazanfari, M ; Ghotbi, C ; Sharif University of Technology
    2012
    Abstract
    Changes in thermodynamic properties such as pressure, temperature, and composition may result in asphaltene precipitation and deposition in porous media. In addition, asphaltene deposition can cause wettability alteration, permeability reduction, and ultimately a decrease in the productivity of a reservoir. Natural depletion is one of the most common processes of asphaltene deposition in which pressure changes destabilize the dissolved asphaltene in the oil and settle them onto the rock surface. In this work, natural depletion experiments in consolidated core samples were performed under simulated reservoir conditions to obtain reliable data and analyze the asphaltene deposition mechanisms.... 

    Performance of sea water dilution on the surface free energies of the crude oils in water-flooded carbonate rock

    , Article Journal of Adhesion Science and Technology ; 2017 , Pages 1-10 ; 01694243 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Although several investigations have studied the low-salinity water injection (LSWI) performance during the past decades, the effect of crude oil type on the interfacial tension (IFT) and wettability alteration is still in dark. In this regard, this study is aimed to obtain the thermodynamic energies including adhesion, cohesion and spreading coefficient during LSWI. To achieve this goal, IFT and static contact angle values of three different crude oils (i.e. light, medium and heavy) are measured as a function of sea water salinity. The obtained results revealed that the dilution of sea water can change the wettability of reservoir rock from oil wet state towards water wet state, while crude... 

    Performance of sea water dilution on the surface free energies of the crude oils in water-flooded carbonate rock

    , Article Journal of Adhesion Science and Technology ; Volume 32, Issue 12 , 2018 , Pages 1359-1368 ; 01694243 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Although several investigations have studied the low-salinity water injection (LSWI) performance during the past decades, the effect of crude oil type on the interfacial tension (IFT) and wettability alteration is still in dark. In this regard, this study is aimed to obtain the thermodynamic energies including adhesion, cohesion and spreading coefficient during LSWI. To achieve this goal, IFT and static contact angle values of three different crude oils (i.e. light, medium and heavy) are measured as a function of sea water salinity. The obtained results revealed that the dilution of sea water can change the wettability of reservoir rock from oil wet state towards water wet state, while crude... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel

    , Article Transport in Porous Media ; Volume 87, Issue 3 , 2011 , Pages 653-664 ; 01693913 (ISSN) Maghzi, A ; Mohebbi, A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in... 

    Potential application of silica nanoparticles for wettability alteration of oil-wet calcite: A mechanistic study

    , Article Energy and Fuels ; Volume 30, Issue 5 , 2016 , Pages 3947-3961 ; 08870624 (ISSN) Dehghan Monfared, A ; Ghazanfari, M. H ; Jamialahmadi, M ; Helalizadeh, A ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Oil recovery from carbonate reservoirs can be enhanced by altering the wettability from oil-wet toward water-wet state. Recently, silica nanoparticle (SNP) suspensions are considered as an attractive wettability alteration agent in enhanced oil recovery applications. However, their performance along with the underlying mechanism for wettability alteration in carbonate rocks is not well discussed. In this work, the ability of SNP suspensions, in the presence/absence of salt, to alter the wettability of oil-wet calcite substrates to a water-wet condition was investigated. In the first step, to ensure that the properties of nanofluids have not been changed during the tests, stability analysis... 

    Relative permeability and capillary pressure curves for low salinity water flooding in sandstone rocks

    , Article Journal of Natural Gas Science and Engineering ; Volume 25 , July , 2015 , Pages 30-38 ; 18755100 (ISSN) Shojaei, M. J ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Recently much attention has been paid to the use of low salinity water (LSW) as an enhanced oil recovery fluid. The change observed in recovery factor during LSW flooding is induced from changes in relative permeability and capillary pressure when different levels of salinity are used. However, a few researchers tried to evaluate how macroscopic flow functions depend on the salinity of the injected water. To this end, a series of oil displacement by water was performed on a sandstone rock aged with crude oil in the presence of connate water. The capillary pressure and relative permeability curves are evaluated from inverse modeling of the obtained pressure drop and oil production data. Then,... 

    Relative permeability measurement in carbonate rocks, the effects of conventional surfactants vs. Ionic liquid-based surfactants

    , Article Journal of Dispersion Science and Technology ; Volume 41, Issue 12 , 2020 , Pages 1797-1811 Zabihi, S ; Faraji, D ; Rahnama, Y ; Zeinolabedini Hezave, A ; Ayatollahi, S ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In the present study, the effect of two different kinds of surfactants namely conventional (Sodium dodecyl benzene sulfonate (SDBS)) and ionic liquid (IL)-based surfactants are investigated on the tertiary oil recovery using relative permeability concept. In this way, besides the Amott wettability index measurement, unsteady state core flooding tests are performed to not only find the effect of surfactant injection on tertiary oil recovery, but also to investigate their effects on relative permeability of carbonate rocks. In addition, for more reliable conclusions regarding the possible mechanisms, interfacial tension (IFT), compatibility and emulsification tests are carried out as a...