Loading...
Search for: wettability-alteration
0.008 seconds
Total 106 records

    Monitoring the influence of dispersed nano-particles on oil-water relative permeability hysteresis

    , Article Journal of Petroleum Science and Engineering ; Vol. 124, issue , December , 2014 , p. 222-231 ; ISSN: 09204105 Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    In recent years, polysilicon nanoparticles are used to enhance the oil recovery through the water injection process in oilfields. The contributing mechanisms are the reduction of interfacial tension and wettability alteration which lead to improving or decreasing the oil phase relative permeability and can be traced by change of relative permeability curves. However, profound understanding of the effect of dispersed nano-silica particles on the hysteretic behavior of relative permeability curves remains a controversy topic in the literature.The current study illustrates the influence of dispersed silica particles on hysteretic trend of two-phase curves of oil-water relative permeability.... 

    Effect of time and temperature on crude oil aging to do a right surfactant flooding with a new approach

    , Article Proceedings of the Annual Offshore Technology Conference ; Vol. 2, issue , 2014 , p. 1136-1142 ; ISSN: 01603663 ; ISBN: 9781632663870 Heidari, M. A ; Habibi, A ; Ayatollahi, S ; Masihi, M ; Ashoorian, S ; Sharif University of Technology
    Abstract
    Dilute Surfactant flooding has been recognized as one of the significant processes in chemical flooding. Many oil reservoirs became appropriate candidates for surfactant/water flooding when screening criteria was developed. Injected surfactant tried to mobilize the residual oil that was trapped in interstice. The main contributing mechanism to enhance oil recovery by surfactant flooding was defined as rock wettability alteration. Wettability is one of the substantial parameters to choose the best approach for a successful surfactant flooding in which tiny change in wettability will lead to improve oil recovery fundamentally. In this experimental study the effect of different aging time and... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Vol. 40, issue , July , 2012 , p. 168-176 ; ISSN: 08941777 Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Numerical simulation of surfactant flooding in darcy scale flow

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 11 , 2014 , Pages 1365-1374 ; ISSN: 10916466 Morshedi, S ; Foroughi, S ; Beiranvand, M. S ; Sharif University of Technology
    Abstract
    One of the methods that is used nowadays in enhanced oil recovery is surfactant flooding. The main mechanisms of surfactant flooding in reservoir consist of reduction of interfacial tension between water and oil and modification of rock wettability. In this study, the authors simulate the surfactant injection process in Darcy scale and in one-dimensional, multicomponent, multiphase state, and effects of physical phenomena such as adsorption, dispersion, convection, and exchange between fluids and solids are considered. Wettability alteration of reservoir rock due to presence of surfactant in injected fluid is detected in relative permeability and capillary pressure curves. First, the authors... 

    Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM#14 and Enterobacter cloacae: A mechanistic study

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 117 , May , 2014 , pp. 457-465 ; ISSN: 09277765 Sarafzadeh, P ; Zeinolabedini Hezave, A ; Mohammadi, S ; Niazi, A ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    During any microbial enhanced oil recovery process, both cells and the metabolic products of bacteria govern the tertiary oil recovery efficiency. However, very accurate examination is needed to find the functionality of these tiny creatures at different reservoir conditions. In this regard, the effect of cell structure on ultimate microbial recovery efficiency which is the most dominant mechanism based on the microorganism types (gram-negative or gram-positive) was systematically investigated. At the first stage, possible different active mechanisms using Bacillus stearothermophilus SUCPM#14 strain were tested using specially designed injection protocol, in situ and ex situ core flooding... 

    Investigation of wettability alteration through relative permeability measurement during MEOR process: A micromodel study

    , Article Journal of Petroleum Science and Engineering ; Vol. 120, issue , 2014 , p. 10-17 Khajepour, H ; Mahmoodi, M ; Biria, D ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Microbial Enhanced Oil Recovery (MEOR) as a tertiary process employs microorganisms and their metabolites to reduce the residual oil saturation of the reservoir mainly through interfacial tension (IFT) reduction and wettability alteration. In spite of its great potential and the mentioned advantages, application of MEOR has been limited because of the lack of practical convincing experimental results. In this study, the effects of MEOR process on wettability changes and the reduction of residual oil saturation have been examined by providing microscopic visualization of two phase flow in transparent glass micromodels. Biosurfactant producing bacterial strain (Enterobacter cloacae) was... 

    Asphaltene deposition during CO 2 injection and pressure depletion: A visual study

    , Article Energy and Fuels ; Volume 26, Issue 2 , December , 2012 , Pages 1412-1419 ; 08870624 (ISSN) Zanganeh, P ; Ayatollahi, S ; Alamdari, A ; Zolghadr, A ; Dashti, H ; Kord, S ; Sharif University of Technology
    Abstract
    Carbon dioxide miscible flooding has become a popular method for Enhanced Oil Recovery (EOR) because it not only efficiently enhances oil recovery but also considerably reduces green house gas emissions. However, it can significantly cause asphaltene deposition, which leads to serious production problems such as wettability alteration, plugging of the reservoir formation, blocking the transportation pipelines, etc. It is crucial to investigate the effects of different factors on asphaltene deposition. A novel experimental setup was prepared to employ a high-pressure visual cell for investigation of asphaltene deposition on a model rock under typical reservoir conditions. The evolution of... 

    Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel

    , Article Transport in Porous Media ; Volume 87, Issue 3 , 2011 , Pages 653-664 ; 01693913 (ISSN) Maghzi, A ; Mohebbi, A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in... 

    Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    , Article Journal of Nanoparticle Research ; Volume 18, Issue 9 , 2016 ; 13880764 (ISSN) Behzadi, A ; Mohammadi, A ; Sharif University of Technology
    Springer Netherlands 
    Abstract
    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at... 

    Effects of low-salinity water coupled with silica nanoparticles on wettability alteration of dolomite at reservoir temperature

    , Article Petroleum Science and Technology ; Volume 34, Issue 15 , 2016 , Pages 1345-1351 ; 10916466 (ISSN) Sadatshojaei, E ; Jamialahmadi, M ; Esmaeilzadeh, F ; Ghazanfari, M. H ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Wettability alteration in porous media is one of the mechanisms for enhancing oil recovery through injecting low-salinity water into carbonate reservoirs, in which active ions can remove the carboxylic oil component from the rock surface, altering the rock's wettability toward a water-wet condition. This study investigated the concomitant effects of low-salinity water and hydrophilic SiO2 nanoparticles on oil-wet dolomite rock. Results revealed that low-salinity water coupled with hydrophilic nano-SiO2 in oil-wet dolomite rock remarkably affected the wettability alteration of the rock, showing that the simultaneous presence of ions in water and hydrophilic nano-SiO2 led to considerable... 

    Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study

    , Article Journal of Molecular Liquids ; Volume 216 , 2016 , Pages 377-386 ; 01677322 (ISSN) Lashkarbolooki, M ; Riazi, M ; Hajibagheri, F ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    The impacts of salinity adjustment of displacing fluid have recently gained special attention to enhanced oil recovery (EOR). Different mechanisms have been studied widely in the literature while some of them are still subjugated to more scrutiny. The effects of diluted sea water on the interfacial properties of brine and asphaltenic-acidic crude oil and the wettability alteration of carbonate reservoir rock are investigated in this experimental observational work. The measurements of interfacial tension (IFT) and contact angle (CA) as two main parameters are studied. Besides, the effects of asphaltene and resin in the crude oil on the IFT values between the crude oil and aqueous solution... 

    Performance of sea water dilution on the surface free energies of the crude oils in water-flooded carbonate rock

    , Article Journal of Adhesion Science and Technology ; 2017 , Pages 1-10 ; 01694243 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Although several investigations have studied the low-salinity water injection (LSWI) performance during the past decades, the effect of crude oil type on the interfacial tension (IFT) and wettability alteration is still in dark. In this regard, this study is aimed to obtain the thermodynamic energies including adhesion, cohesion and spreading coefficient during LSWI. To achieve this goal, IFT and static contact angle values of three different crude oils (i.e. light, medium and heavy) are measured as a function of sea water salinity. The obtained results revealed that the dilution of sea water can change the wettability of reservoir rock from oil wet state towards water wet state, while crude... 

    Toward a hydrocarbon-based chemical for wettability alteration of reservoir rocks to gas wetting condition: implications to gas condensate reservoirs

    , Article Journal of Molecular Liquids ; Volume 248 , 2017 , Pages 100-111 ; 01677322 (ISSN) Erfani Gahrooei, H. R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Recently, wettability alteration has been much attended by researchers for studying well productivity improvement in gas condensate reservoirs. Previous studies in this area only utilized water/alcohol based chemicals for this purpose. While, hydrocarbon nature of the blocked condensate in retrograde gas reservoirs, may motivate application of hydrocarbon based chemical agents. In this study, a new hydrocarbon based wettability modifier is introduced to alter wettability of carbonate and sandstone rocks to preferentially gas wetting condition. Static and dynamic contact angle measurements, spontaneous imbibition and core flooding tests were conducted to investigate the effect of proposed... 

    Streaming potential measurement to quantify wetting state of rocks for water based EOR, inhouse novel setup experience

    , Article IOR NORWAY 2017 - 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Rahbar, M ; Jafarlou, A ; Nejadali, M ; Esmaeili, S ; Pahlavanzadeh, H ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    The wetting condition of the reservoir rock is the key to the success of any EOR technique and the ultimate oil recovery. Wettability is dictated by the surface chemistry related to the interactions between the fluids and the rock surface which determines the stability of the water film between the rock and the oil phase. Streaming potential measurement is one of the electrokinetic techniques used to determine the average zeta potential of porous rock which can provide reliable information on fluid-rock interaction and wettability state of the rock surface. Streaming potential measurement has recently been introduced in the oil reservoirs applications and there are still significant... 

    Experimental investigation of inorganic scale deposition during smart water injection - A formation damage point of view

    , Article IOR NORWAY 2017 - 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Ghasemian, J ; Mokhtari, R ; Ayatollahi, S ; Riahi, S ; Malekzade, E ; Sharif University of Technology
    Abstract
    Smart water injection is determined as an effective EOR process to change the wettability and interfacial tension for better micro/macro sweep efficiencies. This water contains reactive ions such as Mg ∧(2+), Ca ∧(2+) and SO-4 ∧(2-) which can act as potential determining ions and change the surface charge of calcite rocks. One of the major concerns in the execution of an effective waterflood, especially in tight carbonate reservoirs, is the incompatibility between the formation brine and the injecting water. This research work aims to investigate the most important challenge of waterflooding process related to the possible formation damage because of inorganic scale deposition during... 

    Simulation of GAGD Process to Study the Impact of Effective Parameters on Operability Range and Recovery Factor

    , M.Sc. Thesis Sharif University of Technology Nasiri, Javad (Author) ; Pishvaie, Mahmoud Reza (Supervisor) ; Bozorgmehry, Ramin (Supervisor)
    Abstract
    Gravity drainage is the self-propulsion of oil downward in the reservoir rock. Under favorable natural and operational conditions, it has been found to effect recoveries comparable to water displacement. With modern technical knowledge, the operator can often make a choice between dissolved gas drive, water drive and gravity drainage as the principal recovery agent in a reservoir. So far, gravity drainage has received less consideration than the other two. Gravity drainage is one of the most important processes taking place in fractured reservoirs and it plays a major role in oil recovery from low permeability matrix blocks during gas injection process. Gravity drainage is responsible for... 

    Experimental and Modeling Study of Enhanced Oil Recovery Improvement during Nanosilica Particle Flooding to Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Nejatinezhad, Atefe (Author) ; Vosoughi, Manuchehr (Supervisor) ; Ghazanfari, Mohammad Hassan (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Recent studies in nanotechnology field have shown this technology could solve many challenges and needs in oil and gas industry. As yet, many applications of nanoparticles in enhanced oil recovery have been reported. One of the most important applications is wettability alteration due to presence of nanoparticles in injecting fluid, which has recently been studied by several research groups. These studies indicate that, presence of nanoparticles in injecting water would improve oil recovery. However, there is no adequate information about the mechanisms affecting fluid flow in reservoir rock and its mathematical modeling.The aim of this project is to evaluate the effect of injection of... 

    Experimental Investigation of Heavy Oil Recovery by Natural Surfactant Injection in Heterogeneous Systems Using Micromodel Apparatus

    , M.Sc. Thesis Sharif University of Technology Aabloo, Milad (Author) ; Rashtchian, Davood (Supervisor) ; Ghazanfari, Mohammad Hossein (Co-Advisor)
    Abstract
    Nowadays, due to limitation of production from conventional oil reservoirs, enhanced recovery from heavy oil reservoirs is of great concern. However, production from these energy resources is not a simple task and production using common technologies is not easily exploitable. Heterogeneous structure and also high surface tension between injected fluid and reservoir oil are of the main challenges during water flooding processes in heavy oil reservoirs. The high surface tension force causes a large part of the oil remains in the reservoir after the water flooding operation. One method for overcoming this problem is the use of surfactants that reduces capillary forces and consequently... 

    Experimental and Modeling Study of Controlled Salinity Water Injection for Enhanced Oil Recovery from one of Iranial Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Shojaei, Mohammad Javad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Masihi, Mohsen (Co-Advisor)
    Abstract
    From previous years, water injection was considered as one of the most common methods for enhanced oil recovery. But recently much attention has been paid on the use of low salinity water (LSW) as an enhanced oil recovery fluid. The main mechanism that causes improve oil recovery is wettability alteration to a more water wet state. The change observed in recovery factor during LSW flooding induced from changes in relative permeability and capillary pressure when different levels of salinity are used. However, a few researchers tried to evaluate how macroscopic flow functions depend on the salinity of injected water. To this end, a series oil displacements by water performed on sandstone rock... 

    Experimental Study of Nano-bio Material Injection for Heavy Oil Recovery in Shaly Systems Using Micro-model Apparatus

    , M.Sc. Thesis Sharif University of Technology Mohebbifar, Mahdi (Author) ; Vossoughi, Manouchehr (Supervisor) ; Ghazanfari, Mohammad Hossein (Co-Advisor)
    Abstract
    In this research we aim to find enhance oil recovery mechanisms involved in nano-bio material injection by micro model apparatus which has not been studied before. Especially for injection in heavy oil and shaly porous media that forms most of heavy oil reservoirs. To this end, microscopic images from injection of nano-bio materials to shaly patterns have been taken and analyzed to find the process mechanism. Also amount of enhance oil recovery in different conditions like type of microbe forming bio material, nano-bio material concentration and type of flow pattern (shale characteristics including length, direction and distance from injection and production wells) will be studied.Three...