Loading...
Search for: akbarzadeh-changiz--abbas
0.143 seconds

    Investigation of Structure, Microstructure and Mechanical Properties of Al/AZ31 Composite Produced by ARB

    , M.Sc. Thesis Sharif University of Technology Sabeti, Ali (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Metallic multilayer composites provide remarkable mechanical, electrical and magnetic properties. These kinds of composites are recently processed by severe plastic deformation methods. Accumulative roll bonding (ARB) is one of the SPD processes in which accumulation of strain by repeating cycles, leads to the ultra fine grains structures. The goal of this research is manufacturing of Al/AZ31 composite and investigating the relation between the rolling process parameters and the mechanical and physical properties of the final sheet. The initial composite was carried out by cladding of 1mm thick AZ31 sheet in between two commercially pure aluminum sheets with the same thickness (57%... 

    Investigation of the Effects of Various Parameters on Microstructure and Mechanical Properties of Nano-Composite Al-Al2O3 and Al-Sic Produced by Accumulative Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Rezayat, Mohammad (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Accumulative roll bonding has been used as novel method to produce the composite with ultra fine grain microstructure. This method has two steps, impose the particles as reinforcement between the layers by roll bonding process and then distribute the particles in matrix and generat an ultra fine grain microstructure during the ARB passes. In the present work, ARB process was performed to produce the Al/SiC and Al/Al2O3 nano-composites with various particles size and different volume fraction of reinforcement. Microscopic observations such as OM, SEM and TEM and XRD analyses were used to investigate the microstructure of produced composites and the distribution of the particles in matrix... 

    Effect of Equal Channel Angular Pressing(ECAP) Parameters on Microstructure and Mechanical Properties of Strip Samples of AZ31 Mg Alloy

    , M.Sc. Thesis Sharif University of Technology Arab, Mohammad (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Equal Channel angular pressing (ECAP) is one of the most applicable Severe Plastic Deformation (SPD) Procedures which results in improvement of strength and ductility through grain refinement and an appropriate texture development. In this study, in order to achieve a proper orientation and microstructure, ECAP was performed in different routes and temperatures up to 4 passes on AZ31 magnesium alloy. Microstructure and mechanical properties were studied. X-ray diffraction analysis was performed to study the basal orientation variation and calculation of sub-grain size. In addition, cold rolling at room temperature was done on the fourth pass specimens, in order to study the effect of ECAP... 

    Study of Microstructural and Textural Evolution and Mechanical Properties of 1050 Aluminum Alloy Through Ecap, Annealing and Rolling

    , M.Sc. Thesis Sharif University of Technology Asadi, Parvaneh (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    In the present study, the microstructural and textural evolutions and mechanical properties of 1050 Aluminum alloy was investigated through ECAP processing. The effects of annealing and strain path change by cold rolling on the ECAPed specimens were also investigated. The number of ECAP passes, annealing temperature and reduction of area during cold rolling were chosen as the variable parameters. The results showed that the grains became finer by increasing the ECAP passes. It is shown that the volume fraction of low angle grain boundaries increased in the first two passes. However, the volume fraction of high angle grain boundaries increased in the next passes. Continuous dynamic... 

    Effect of Temperature and Strain Rate on the Nano-Structure Produced by ASB Process in Production of Aluminum CNG Cylinders

    , M.Sc. Thesis Sharif University of Technology Alinaghian, Hossein (Author) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Accumulative spin bonding as a severe plastic deformation process results in a finer microstructure through multi-pass processing. This method consists of successive and repeated preparation of internal and external surfaces of two similar tubes, simultaneous flow forming of two tubes and production of a tube with the same thickness as the primary one. This word was conducted to study the effect of different rotational speeds and different cooling environments on the mechanical properties and microstructure of AA1050 tubes. The samples were prepared with 0.8 mm thickness and 92.8 mm internal diameter through four passes of ASB with 250, 500, 710 rpm under air, water and acetone cooling... 

    Molecular Dynamics Simulation of Phase Transformation and Shape Memory Effect of Ni-Ti Nanowires

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Nazanin (Author) ; Simchi, Abdolreza (Supervisor) ; Akbarzadeh Changiz, Abbas (Co-Advisor)
    Abstract
    Phase transformation in Ni-Ti shape memory alloys (SAM) have been investigated quite frequently due to their shape recovery by thermal cycling. With emerging of nanotechnology, the martensitic/austenite phase transformation in SAM at nanoscale has become of interest for MEMS and NEMS applications. In this work, molecular dynamic simulation (MD) was utilized to study the phase transformation and shape memory effect in Ni-Ti nanowires. EAM/Alloy and EAM/FS potential functions were used. The potential energy versus temperature and time for the phase transformation was calculated and combined with the radius distribution function (RDF) in order to study the changes in the crystal structure.... 

    Modification of Surface Nanostructure and Mechanical Properties by Friction Stir Processing in Al 5083 with Al2O3 and Cu Particles

    , M.Sc. Thesis Sharif University of Technology Khaksari, Mehdi (Author) ; Kokabi, Amir Hossein (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Al 5083 is a non-heat treatable alloy that widely used in the aerospace and automotive industry due to its low density and high strength. However, poor wearing behavior and low elastic modulus restrict its engineering applications. Metal matrix composites (MMCs) have advantages of high strength and modulus by reinforcement of second phase. Also, MMCs have excellent dimensional stability, damping capacity and wear, creep and fatigue resistances as compared with the corresponding monolithic alloys. Vast loss in ductility and toughness occurs by non- deformable ceramic reinforcements. For the surface engineering purposes, ceramic particles are added in the surface layers of components, whereas... 

    Ductility Enhancement of Accumulative Roll bonded Aluminum Sheet by Developing a Bimodal Grain Size Distribution

    , M.Sc. Thesis Sharif University of Technology Kourosh Khalili (Author) ; Seyyed Reyhani, Morteza (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    The goal of this project is production of composite laminated sheetswith bimodal microstructure using ARB process. It is planned to produce a laminated sheet having bimodal grain size distribution in microstructure to increase the formability while maintaining the strength. Two different aluminum alloys including AA 1050 and AA5083 were ARB processed up to 9 cycles, Then the ARB samples were annealed under controlled temperatures and times. Due to structural differences like stacking fault energy,stored cold work energy and solute atoms concentration, annealing ofThese two alloys lead to different recrystallized grain sizes. In order to evaluate the recovery and recrystallization behavior of... 

    An Investigation on Multistage Strain Aging Using Rolling Process on Mechanical and Formability of Stainless Steel 304L

    , M.Sc. Thesis Sharif University of Technology Mousavinia, Ali (Author) ; Karimi Taheri, Ali (Supervisor) ; Akbarzadeh Changiz, Abbas (Supervisor)
    Abstract
    Austenitic stainless steels have extensive and special mechanical properties because of austenite to α΄-martensite transformation due to plastic work. Obtaining a process path that provides maximum strength and flexibility and minimum α΄-martensite content (α΄-martensite increases corrosion current) in these steels is important in the industry. Applying the aging process after applying plastic strain (single-stage aging) results in an increase in strength of up to 200 MPa and an increase in hardness of up to 60 Vickers. However, single-stage aging does not cause significant changes in the amount of α΄-martensite in steel and in the temperature range of 400 to 500 ° C, it causes a slight... 

    , M.Sc. Thesis Sharif University of Technology (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    FGM sheets with component or grain size gradient in their thickness direction provide mechanical and physical gradient properties through ND direction. FGMs are fabricated by various methods including centrifugal casting, powder metallurgy, PVD and CVD,all of which suffer from some shortcomings such as porosity of the products, low rate and high cost of production and restrictions on mass production. In this study, 2 and 4 layered Al matrix FGM sheets containing SiC and Al2O3 powders were fabricated by laminating method of Accumulative Roll Bonding(ARB). Two approaches of stacking were chosen as accumulative coupled roll bonding (ACRB) and (ASRB) for initial roll bonding and subsequent... 

    Using ARB Process for Metal Matrix Foam and Composite Production

    , M.Sc. Thesis Sharif University of Technology Khalkhali, Mohammad (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Metal matrix composites (MMC) and metal foams (MF) have been the topic of numerous researches during the last decades. The appropriate mechanical and physical properties of these materials make them useful in various industries. In this research, a unique approach is introduced for producing MMCs and MFs in which accumulative roll bonding (ARB) is employed in order to achieve a homogeneous distribution of ceramic particles in the metal matrix. Also, foamed structures can be made by subjecting Al/TiH2 composite to an appropriate annealing heat treatment where TiH2 particles decompose to hydrogen and titanium. In this work, the effect of number of ARB cycles on the size and distribution of... 

    Evaluation the Effect of Thermo-Mechanical Parameters on Microstructure and Texture of Electrical Steel for Improving Magnetic Permeability

    , M.Sc. Thesis Sharif University of Technology Ahmadian, Peyman (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Dependence of some magnetic properties such as core loss and permeability on temper rolling was studied in this thesis. It is shown that with a proper temper rolling sharper textures are obtained in the electrical steel and the magnetic properties in the longitudinal and traverse directions are improved. By texture analysis, it is shown that because of temper rolling, shear strain on the surface of the sheet is the main factor for abnormal grain growth and shear texture formation on the surface. The result of formation of this texture is enhancement of the {100} intensity and reduction of the {111} intensity, leading to the improvement of the permeability. Temper rolling is always... 

    Hot Workability of a Free-cutting Steel with Severe Sulfur Segregation During Continuous Casting

    , M.Sc. Thesis Sharif University of Technology Naghdy, Soroosh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Splitting in ingot cast structures and transverse cracks in continuous cast structures are the main problems of hot rolling of low carbon resulfurized free-cutting (LCRF) steels. Presence of high volume fraction of manganese sulfide inclusions in cast structure increases the risk of alligatoring in hot rolling. Because of high sulfur content of these steels and probability of formation of low melting point phases, minimum level of manganese and maximum level of copper and tin is necessary. Morphology of manganese sulfide is another important factor in hot forming of these steels, which can be controlled by level of deoxidation in steel making. In fact, MnS2 is present in fully killed... 

    Deposition of Ceramic Nanoparticles on Aluminum Sheet by Air Gun Spraying for ARB Processing of Nanocomposite Sheets

    , M.Sc. Thesis Sharif University of Technology Keramat, Ehsan (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Particle reinforced aluminum matrix composites have considerable attraction in automotive and aerospace industries due to their special properties as light weight, high ratio of strength/density, improved elastic modulus, low coefficient of thermal expansion and high wear and corrosion resistance. Among the production processes of metal matrix composites, accumulative roll bonding process has particular importance due to producing ultrafine grained composite sheets. However, uncontrolled and undesired agglomeration of particles is the main problem in producing these composites. In this research, the Al2O3 and SiC nanoparticles were electrostatically stabilized against agglomeration by... 

    Bonding Feasibility, Mechanical Properties and Formability of Three-layered St/AZ31/St Composites Fabricated by Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Abedi, Reza (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    New materials as hybrid materials or laminate composites, due to combination of many properties, can be used in many industries. The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450 ⁰C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375 ⁰C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens... 

    Design and Manufactur, Medical Stent at Stainless Steel 316L

    , M.Sc. Thesis Sharif University of Technology Moghtada, Abdolmajid (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Due to increased mortality from Coronary Heart Disease, it is important to work on ways to treat this disease. An effective method of treatment on this disease is the coronary stent implantation. There are nearly two decades passed since implanting the first heart stent. The main objective of this research is design and manufacturing of the medical stents of stainless steel 316 L. Stent materials should have excellent corrosion resistance and biocompatibility. Various materials such as stainless steel 316 L, platinum alloys, niobium alloys, cobalt alloys are used for manufacturing the stents. In this project, at the first stage seam tube was prodected with laser welding of a tube with... 

    Using FSP Method to Create Composite and Surface Foam with Distribution Gradient of Particles and Porosity as FGM and Study of Physical and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Karimi, Mahdi (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Nowadays, the tendency to use Al/SiC composites with FGM structure has increased in the automotive and aerospace industries, because in this type of composite, the properties can be gradually changed in the direction of thickness. For example, one composite surface is used as a wear-resistant or high-temperature-resistant coating, and the other surface can be welded, has high thermal conductivity, or has a good toughness. In recent years, methods have been used to make surface composites, most of which are in the molten state and at high temperatures. In this case, the reactions between the compounds can not be easily controlled and the possibility of the formation of undesirable or... 

    Effects of Rolling Process on Mechanical Properties and Formability of Reinforced Polymeric Matrix with Stainless Steel Mesh as Cladding Composite Sheet

    , M.Sc. Thesis Sharif University of Technology Aminoon, Mohadeseh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    In this study, the mechanical properties of composite sheet polymer matrix reinforced with steel mesh were investigated. This bonding was carried out by rolling of a three layers of steel mesh in between two composite polymer sheets. Then, the effective parameters of process; Sample maintenance temperature inside the furnace, reduction during rolling, rolling speed, rolling direction and Number of rolling passes were investigated to determine the optimized processing conditions. In this way, adding mesh to the polymeric matrix improves the strength and polymer / polymer bond in the sandwich structure. Placing the mesh in the sandwich structure converts the brittle behavior of the polymeric... 

    Experimental Investigation of Formability and Mechanical Properties of Composites Manufactured by Direct Roll Bonding

    , M.Sc. Thesis Sharif University of Technology Maleki, Payam (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    In this study, the ST14 low carbon steel sheet was used as a skin layer in the construction of three-layer laminates. The use of this steel was due to its high mechanical properties and excellent formability. A thermoplastic polyurethane sheet was also used as the core layer. The selection criteria of this polymer were no need for adhesive (for bonding metal to polymer) as well as proper mechanical properties (elongation and strength) and physical (density). The perfect process for manufacturing three-layer laminates is the roll bonding process. To manufacturing a laminate with the desired properties of the designer, the rolling parameters (rolling speed and thickness reduction) must be... 

    Fabrication and Investigation of the Microscopic Structure and Mechanical Properties of Zx00 Magnesium Alloy by Applying the Multi-Directional Forging Process on Extruded and Homogenized Samples

    , M.Sc. Thesis Sharif University of Technology Dehghan, Ali (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Magnesium and its alloys have gained significant attention in medical applications due to their good biocompatibility. However, their widespread use has been limited by some inherent drawbacks, such as poor mechanical properties. The ZX00 magnesium alloy has been used in medical applications, including implants, due to its slow degradation rate and good ossification. However, this alloy lacks sufficient strength and ductility. The severe plastic deformation method can create an ultrafine grain structure and improve mechanical properties. In this study, to improve the mechanical properties and create an ultrafine grain structure, the multi-directional forging process was performed on...