Loading...
Search for: ali-akbar-tehrani--zahra
0.122 seconds

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    Abstract
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Theoretical Investigation of Hydrogen Bonding Effects on Interaction of Metal Nanoclusters with Biomolecules & Acidity Enhancement of Alcohols

    , Ph.D. Dissertation Sharif University of Technology Ali Akbar Tehrani, Zahra (Author) ; Fattahi, Alireza (Supervisor) ; Mahmoodi Hashemi, Mohammad (Supervisor) ; Jamshidi, Zahra (Co-Advisor)
    Abstract
    This thesis is divided into three parts: In part I, conformational properties of neutral, anionic, cationic and zwitterionic forms of glutathione tripeptide were investigated by means of DFT-B3LYP method with 6-31+G (d,p) basis set. Results show that glutathione is a very flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond and its charge. Conformation of each amino acid in glutathione tripeptide depends on its orientation within the peptide sequence in addition to the conformation of other amino acids within the chain. Investigation of intramolecular hydrogen bonds in these conformers by means of AIM analysis demonstrates... 

    FEM Analysis of the Effects of Geometric Parameters on the Superplastic Forming of Metal Matrix Composit

    , M.Sc. Thesis Sharif University of Technology Tehrani, Mehdi (Author) ; Abedian, Ali (Supervisor)
    Abstract
    In aerospace applications, the weight of structures is considered as a major performance parameter. One of the most effective ways for weight reduction is then attributed to the structurally continuous manufacturing of mechanical components. In this way, not only the weight, but also the stress concentration, the cost, joints and fasteners applications, and the time of manufacturing are noticeably reduced. With this method, components with complicated shapes could be formed in a single manufacturing step. Special specification of whisker reinforced Metal Matrix Composites (MMC’s) has made these materials very attractive for the aerospace applications.That is why the superplastic forming of... 

    Bioactivity of Surface Modified Titanium Alloy Ti-6Al-4V ELI by Pack Siliconizing in Simulated Body Fluid

    , M.Sc. Thesis Sharif University of Technology Rezvani, Alireza (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Titanium alloy Ti-6Al-4V ELI with high biocompatibility and corrosion resistance, has a lot of applications in biomedical engineering. Disadvantage of this alloy is it’s disability to create a fast and good contact with the host/bone environment, after implanting in the body. Beside that it has low wear resistance. Nowadays to optimize the wear resistance, bioactivity and osteoconduction of surface of implants which are made from this alloy, the surface morphology are optimized in size and distribution. Different surface treatments are used for producing rough and porous surfaces to improve bioactivity along with wear resistance. In this study, surface modification of Ti-6Al-4V ELI was done... 

    Characterization of Metallurgical and Geometrical Parameters on Fracture Behavior of Pure Titanium thin Sheets

    , M.Sc. Thesis Sharif University of Technology Nasiri, Hamid (Author) ; Ekrami, Ali Akbar (Supervisor) ; Ziaei Moayyed, Ali Akbar (Supervisor)
    Abstract
    Commercially pure titanium (CP-Ti) is an important groups of titanium family and because of high strength, low density, high corrosion resistance and biocompatibility, this group of titanium is a suitable choice for application at chemical, petrochemical and medicine industry. Nowadays surgeons have a tendency toward use of CP-Ti instead of Ti-6Al-4V alloy. Moreover, because of body anatomy limitation, use of thick sheets result in high volume and damage soft tissue. Therefore, for sheet thickness reduction, study of the effects of metallurgical and geometrical parameter on fracture behavior of thin sheets is important. In this study, the fracture behavior of CP-Ti thin sheets investigated.... 

    Numerical Investigation of Nano-Particles Dispersion and Deposition in Curved and Bifurcating Channels using Lattice Boltzmann Method

    , M.Sc. Thesis Sharif University of Technology Tehrani Saleh, Ali (Author) ; Moosavi, Ali (Supervisor)
    Abstract
    Investigation of transport and deposition of aerosol particles attracts interests in many fields of sciences. Various numerical and computational methods has been utilized in particulate flows studies. In recent relevant researches lattice Boltzmann method has been widely used and is reported to be a robust and efficient method. In present study, numerical investigation of dispersion and deposition of aerosol particles is performed in curved and bifurcating channels using LBM. Fluid flow simulations are performed using LBM while one-way coupling Lagrangian point of view is used for particle tracking. As the first showcase, transport and deposition of aerosol particles in channel flow with... 

    Design of Drug Nanocarriers Based on Mesoporous Silica Nanoparticles Coated with Smart Polymers

    , Ph.D. Dissertation Sharif University of Technology Mazaheri Tehrani, Zahra (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Mesoporous silica nanoparticles have broad application in drud delivery systems due to their porous structure, functionalization, biocompatibility, high surface area and pore volume. Neverthless, pure mesoporous silica nanoparticles without functionality were not smart material and could not release drug in triggered and controlled manner. For this reason, using smart polymeric coating would be considered. Polymer shells also provide colloidal stability, improved blood circulation lifetime and reduced toxicity which are crucial for efficient in vivo drug delivery. Inflammatory and tumor tissue have low pH and high temperature as compared to health tissue. Therefore, using pH and... 

    A Deep Generative Model for Graph-Structured Data

    , M.Sc. Thesis Sharif University of Technology Sarshar Tehrani, Fatemeh (Author) ; Movaghar, Ali (Supervisor)
    Abstract
    In recent years, deep generative models have achieved incredible successes in various fields, including graph generation. Due to the advances made in graph generation by deep generative models, these methods have shown numerous applications from drug discovery and molecular graph generation to modeling social and citation network graphs. Graph generation is an approach to discovering and exploring new graph structures and has been attracting growing attention. One of the most challenging applications of deep graph generative models is molecular graph generation since it requires not only generating chemically valid molecular structures but also optimizing their chemical properties in the... 

    Online Health Monitoring of Nonlinear Hysteretic Structures Using System Identification Techniques and Signal Processing Tools

    , Ph.D. Dissertation Sharif University of Technology Amini Tehrani, Hamed (Author) ; Bakhshi, Ali (Supervisor)
    Abstract
    Adverse social and economic effects of earthquakes have necessitated the emergence and development of efficient methods to assess and monitor the health status of structures. Many of the structural health monitoring algorithms are based on linear models that are not able to provide sufficient dynamic information. Nonlinear models require monitoring of a larger number of structural parameters and provide a much closer to reality model of the structure. Therefore, the use of nonlinear models in the identification process provides more useful information about the safety and serviceability of post-earthquake structures. Also, most of the existing methods are not applicable for online health... 

    Implementation of Millimeter-wave Imaging Algorithm Based on Frequency Scanning Antenna

    , M.Sc. Thesis Sharif University of Technology Mansouri Tehrani, Mohammad Ehsan (Author) ; Shabani, Mahdi (Supervisor) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Nowadays millimeter wave imaging technology has found various applications in industry, medical and security systems. From one side the capability of penetration of this frequency spectrum into non-metal objects, and being harmless to humankind on the other side, has made this spectrum an appropriate alternative instead of dangerous spectrums such as X-ray. Recently, development of millimeter wave electronic circuits and antenna arrays has made the optimal design and implementation of millimeter wave imaging systems feasible. Among actions which have been taken in industry, medical and security systems until now, we can refer to efforts for detection of defects in production line,... 

    Effect of Martensite Volume Fraction on Fatigue Properties of Ferrite- Bainite- Martensite Triple Phase Steel

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The introduction of multi phase steels in recent years resulted in a considerable increase in development of some industries such as automobiles. By inducing soft and hard phases together, these steels could bring better mechanical properties than classical ones. Recent studies on 4340 ferritic- bainitic and ferritic- martensitic dual phase steels, indicate that 34 volume percent ferrite with hard phase, has the best combination of strength, toughness and fatigue properties. In present research, by proper heat treatment on a 4340 steel, it is tried to prepare specimens ferritic- bainitic- martensitic triple phase steels with 34 volume percent of ferrite and different percents of martensite.... 

    Effect of Transient Liquid Phase(TLP)Diffusion Bonding on Fatingue Properties of Al 6061-SiC Composite

    , M.Sc. Thesis Sharif University of Technology Khabir, Maibod (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In the research transient liquid phase bonding of AL6061-SiC composite was performed using copper as interlayer. The joining praocess was performed in various tetemperatures (560c and 580c and 600c) And times (6 and 8 hours). Optimum Joining condition was determined by using optical and of the joint, micro hardness test was performed from the bonding zone to the bulk of the base composite. The fatigue endurance limit of Al6061-SiC composite was determined by several fatigue tests and TLP bonded samples were loaded under achieved endurance limit stress. Finally fatigue fracture surface of both base composite and TLP bonded samples were studied by using of scanning electronic microscope  

    Effect of TLP Bonding on Microstructure and Thermal Fatigue Properties of Co-Based FSX-414 Superalloy

    , Ph.D. Dissertation Sharif University of Technology Bakhtiari, Reza (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    In this research, transient liquid phase (TLP) bonding of FSX-414 superalloy was investigated using MBF-80 interlayer. The bonding was performed at different temperatures (1050-1200oC) for various times (1-120min). Also, different gap sizes were studied using the interlayer with various thicknesses (25-100µm). Homogenizing treatment was performed at different temperatures (1175-1225oC) and times (1-6h) for the samples with complete isothermal solidification. The microstructure of the samples were studied using the optical, scanning electron and transmission electron microscopes. Also, XRD, SEM/EDS, SEM/WDS and TEM/EDS analyses were used to analyse the observed phases at the joints. To... 

    The Effect of Martensite Volume Fraction on Toughness of Triple-Phase Steels

    , M.Sc. Thesis Sharif University of Technology Zare, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    AISI 4340 steel bars were austenitized at 900°C for 1 hour followed by heating at 740°C (ferrite and austenite region) for 100 min and quenching into a salt bath at 300°C for different times followed by quenching into water to obtain triple phase microstructures with 34 Vol.% ferrite and various martensite (or bainite) contents. Presence of three phases in adjacent of each other confirmed by metallographic analysis and TEM technique. Volume fraction of different phases was measured by image analyser. The results of optical microscopy showed that by increasing VM, morphology of martensite varies from uniform distribution of small spherical network particles to large blocky islands with... 

    The Effect of Interlayer Composition on Microstructure and Mechanical Properties of Transient Liquid Phase Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Azqadan, Erfan (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Interlayer composition as one of the most important factors of TLP bonding could affect bonding region composition and microstructure that both of them govern the mechanical properties of the joint. Due to the risk of substrate microstructure degradation , welding of dual phase steel needs more cautions. TLP bonding ideally acquires joints having more similar microstructure to substrate. Moreover , using this method could avoid the change of base metal microstructure when heat treatment of carbon steel is postponed until after bonding. Fe-based , Ni-based and commercially pure Cu are three different composition has been studied in this work. The bonded samples were investigated by optic and... 

    The Effect of Pressure on Microstructure and Mechanical Properties of TLP Bonded Dual Phase Steels

    , M.Sc. Thesis Sharif University of Technology Fathi, Mohammad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Dual Phase ferritic-martensitic steels are kind of high strength low alloy steels (HASLA) which are widely used in industry because of their strength and formability. Since welding of dual phase steels in conventional welding methods causes structural change and Subsequently alters mechanical properties of both weld zone and heat affected zone(HAZ), additional operations which are not commercially viable is needed to achieve a dual phase structure in structurally changed regions. In this study, transient liquid phase (TLP) bonding method is used during dual phasing process in order to preserve dual phase ferritic-martensitic structure and avoid extra heat treatment. Applied pressure during... 

    Microstructure-mechanical Properties Relationship of Transient Liquid Phase Bonded 304 Stainless Steel With a Co-based Interlayer

    , M.Sc. Thesis Sharif University of Technology Sadeghian, Mohammad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    Stainless steels have many applications in different industries like chemistry, medicine and food production. So for using these alloys it is necessary to join them with appropriate method. In this research, microstructure-mechanical properties relationship of 304LC austenitic stainless steel transient liquid phase bonded using a Co-based interlayer was investigated. For this purpose, bonding was conducted at 1180 ℃ for different holding times. Microstructure of the joints was evaluated by optical microscopy (OM) and Scanning Electron Microscopy (SEM). The results showed that isothermal solidification (IS) was completed within 1800s and no intermetallic compound was formed in the joint area... 

    Evaluation of Microstructure and Fatigue Properties of HSLA-100 Steel Welded by SMAW and FCAW Methods

    , M.Sc. Thesis Sharif University of Technology Shahrani, Siamak (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    After World War II, steel bearings containing copper element have been developed by the Navy of the United States of America with the HSLA-100 brand. Since 1890 and in order to manufacture tanks and tools for the body of navy equipment, the steel HY 80 was used instead of HSLA-100. Because of the high carbon content, the welding properties of the HY 80 are low. Furthermore, increasing of hardness and decreasing of toughness in the heat-affected zone generated during the welding process lead to susceptibility of this alloy to hydrogen cracking and brittle fracture. Therefore, in order to minimize the cost of welding, low-alloy high strength steel (HSLA) is used which contain copper. Reducing... 

    Reheating the Universe after Inflation Via Resonant Interactions

    , M.Sc. Thesis Sharif University of Technology Yarahmadi, Amir (Author) ; Abolhasani, Ali Akbar (Supervisor)
    Abstract
    The inflation paradigm solves the so-called flatness problem of the standard cosmo- logical model and explains the homogeneity of the Universe by adding a period of exponential expansion at early times to the standard scenario. Moreover, it provides a mechanism for generating density perturbations, serving as the seed of large-scale structures. One of the successes of inflation is predicting primordial scale-invariant perturbations that agree with the observations of cosmic background radiation. Nev- ertheless, there will be a cold, matter-free universe after exponential expansion, so one needs a process that leads to a hot cosmos containing standard particles after the end of inflation, the... 

    The Origin of Angular Momentum in Cosmological Structures

    , Ph.D. Dissertation Sharif University of Technology Ebrahimian, Ehsan (Author) ; Abolhassani, Ali Akbar (Supervisor)
    Abstract
    Explaining the angular momentum of the cosmological structures is an essential part of the structure formation theory, and it is not fully understood yet. The Tidal Torque Theory (TTT) is the standard explanation of the initial angular momentum of the halos based on the gravitational instability picture. It predicts the angular momentum growth with linear approximation and has been confirmed for linear stages of proto-halos, but the final halo is a highly non-linear object. Nonlinear effects are hard to model, however, we propose a new mechanism for the nonlinear evolution of the halos. We suggest that when two halos pass by each other, their angular momentum changes with a similar mechanism...