Loading...
Search for: eidi-attar-zade--masoud
1.519 seconds

    Experimental Study of the Performance of a Multi-Tube Pulse Detonation Engine

    , M.Sc. Thesis Sharif University of Technology Eidi Attar Zade, Masoud (Author) ; Farshchi, Mohammad (Supervisor) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    Performance of a multi tube pulse detonation engine has been investigated experimentally. A pulse detonation engine uses detonation phenomena and simply consists of a large narrow tube which has closed head, and has feeding system and ignition system. In this tube, detonation is produced periodically to generate thrust. In multi-tube mode, several tubes are arranged in parallel which detonate sequentially. Our PDE consists of 2 tubes with 70 cm length and 25 mm inner diameter which have several places performed for high speed pressure sensors installation. The premixed hydrogen-oxygen mixture are controlled by solenoid valve and injected on head-end and ignited by conventional spark plug.... 

    (Topological Quantum Field Theory (TQFT

    , M.Sc. Thesis Sharif University of Technology Eidi, Marzieh (Author) ; Jafari, Amir (Supervisor)
    Abstract
    This thesis is about one of the newest attractive theories in mathematics and theoretical physics; Topological Quantum Field Theory (TQFT) has some basic algebraic requirements called tensor categories, after introducing them and describing axioms of the theory which has suggested by Atiyah in 1988, we will see that the category of 2d-TQFT is equivalent to the category of commutative frobenius algebras over an arbitrary field .In the last part we focus on some topological aspects of theory in dimension 3 and some invariants of 3d manifolds , we will see these invariants are the main tool for construction a 3d-TQFT  

    Protection of Steel Rebar in Concrete with Zinc Based Coatings in Persian Gulf

    , M.Sc. Thesis Sharif University of Technology Attar, Morteza (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Reinforced concrete is one of the most important structural materials used in the construction industry worldwide. Nevertheless, certain physical and chemical factors in the service environment can contribute to its deterioration and failure. One of the most significant factors is the reinforcing steel bar (rebar) corrosion. In order to minimize the rebars corrosion, different kinds of coatings were investigated and evaluated by scientists. In this investigation comparative studies were performed on two different kinds of coated rebars (zinc-rich epoxy and polyamide epoxy coated rebars) and uncoated rebar. In order to evaluate these reinforced concretes, the adhesion, durability, thickness... 

    Condition Monitoring of Large Motors Using PQ Indices

    , M.Sc. Thesis Sharif University of Technology Attar, Abolfazl (Author) ; Mokhtari, Hossein (Supervisor)
    Abstract
    In this thesis, a model is presented to detect and monitor the rotor bar's condition of large motors. This proposed model uses two diagnostic methods MCSA and ZCT, to extract the fault components. The input of the proposed model is only the motor current at two levels of 80% and 100% of the nominal motor load, which by using the two methods MCSA and ZCT and making changes in how to use them can be the disadvantages of other methods such as incorrect detection of rotor bars in Large motors with variable load, the harmonical stator voltage (or the presence of the drives) and asymmetric conditions. The extracted components are classified using two learnable algorithms, the k-NN algorithm and... 

    Process Design of Ionic Liquid-Based CO2 Capture with Consideration of Economic and Environmental Issues

    , M.Sc. Thesis Sharif University of Technology Eidi, Ali (Author) ; Rashtchian, Davood (Supervisor) ; Adibi, Mina (Co-Supervisor)
    Abstract
    Concerns have increased about global warming caused by CO2 emissions in the atmosphere. At the moment, carbon capture and storage is the best available solution. Among the current technologies for CCS, amine-based chemical absorption appears to be the most common method. Amines show several inherent drawbacks such as high vapor pressure, high energy consumption in regeneration, corrosivity and degradability. So, researchers have developed new solvents with the foresight of being superior to amines. Ionic liquids (ILs) are among the most suitable alternatives. The most prominent feature of ILs is their tunable thermophysical properties. In this work, physical absorption by ILs is chosen as... 

    Two-stage thermocatalytic upgrading of fuel oil to olefins and fuels over a nanoporous hierarchical acidic catalyst

    , Article Petroleum Science and Technology ; Volume 37, Issue 16 , 2019 , Pages 1910-1916 ; 10916466 (ISSN) Ghashghaee, M ; Shirvani, S ; Ghambarian, M ; Eidi, A ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    A two-stage thermocatalytic upgrading process using a novel catalyst was investigated to produce light olefins and liquid fuels from fuel oil. The upgraded oil from the first thermal stage demonstrated lower viscosity and higher crackability compared to the virgin feedstock. In the next step, the vapor-phase catalytic cracking of the upgraded fraction was implemented over a novel nanoporous composite catalyst, characterized by the XRD, FTIR, NH3- TPD, and N2 physisorption techniques. In total, more than 55 wt% of light olefins, particularly propylene (25.5 wt%) together with 25.4 wt% and 32.5 wt% of gasoline and diesel fuel were obtained in this process. © 2019, © 2019 Taylor & Francis... 

    Low voltage low power 8-bit folding/interpolating ADC with rail-to-rail input range

    , Article Analog Integrated Circuits and Signal Processing ; Volume 61, Issue 2 , 2009 , Pages 181-189 ; 09251030 (ISSN) Movahedian Attar, H ; Sharif Bakhtiar, M ; Sharif University of Technology
    2009
    Abstract
    A new technique for improving the performance of low-voltage folding ADC's by extending the input range is presented. It is shown that by using both PMOS and NMOS differential pairs in the folding blocks, the overall input voltage range of the ADC can be increased to rail-to-rail. A novel self-adjustment method is also introduced to compensate for the different input-output characteristics of PMOS and NMOS differential pairs. A low voltage 8-bit 80 MSample/s folding/interpolating ADC is then designed and fabricated in a 0.18 μm CMOS process. Operating with a supply voltage as low as 1.2 V, measurements show an INL below ±0.55 LSB, SNDR of 43.5 dB at 80 MHz Sampling Frequency and power... 

    Density Measurement in Oil and Gas Wells using Ultrasonic Sensors

    , M.Sc. Thesis Sharif University of Technology Baneshi, Abdolkarim (Author) ; Movahedian Attar, Hamid (Supervisor)
    Abstract
    Production logging consists of running measurement instruments called logging tools into an oil or gas well to measure various parameters such as temperature, flow velocity, pressure, density, etc. The primary purpose for production logging is to allow enhancing production profits and decreasing costs. Nowadays the common way for fluid density measurement as a part of these tools depends on radioactive source. Special considerations must be taken upon the use of this principle due to its radioactive character. This thesis is focused on a non-radioactive method of determining density. The subject of this thesis is to consider methods for measuring density based on principle of acoustic... 

    Design of Transmit Code & Receive Filter in Radar Via Manifold Optimization

    , M.Sc. Thesis Sharif University of Technology Attar Hamidi, Farzin (Author) ; Karbasi, Mohammad (Supervisor)
    Abstract
    The problem of joint design of transmit code and receive filter is considered in many application scenarios of multiple input multiple output (MIMO) radar systems. The performance of the joint design problem is evaluated with the signal-to-interference ratio (SINR) metric in the presence of noise. In such problems, the optimization problem is to maximize SINR on the receiver side with the constraints that are applied on the transmitted waveform. Our proposed method, RTR, is a manifold-based geometric method that performs better than the SDP method in terms of algorithm execution speed and calculation complexity. For simulation, we took sampled and real TIR with Target Aspect Angle (TAA) in a... 

    Designing Tools for Casing and/or Borehole Quality Measurement

    , M.Sc. Thesis Sharif University of Technology Ghafourzadeh, Morteza (Author) ; Movahedian Attar, Hamid (Supervisor)
    Abstract
    Sonic and ultrasonic measurements are used for checking status of wells. Well logging is used to estimate well specifications like borehole diameter, casing thickness, cement bond quality and cement sheath thickness. In this thesis, some reported works in field of sonic/ultrasonic measurement of oil wells are reviewed and results of software implementation of ultrasonic measurement with pitch-catch arrangement, pulse-echo arrangement and phased array arrangement are presented. ultrasonic measurement with pitch-catch arrangement uses one transducer for transmitting ultrasonic waves and two transducers (in different distances) for receiving ultrasonic waves. Ultrasonic measurement with... 

    The Study of the Photocatalytic Effect of ZSM-5 Zeolite

    , M.Sc. Thesis Sharif University of Technology Raeisi Zade, Vida (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    In this study, different metal oxides were impregnated on the surface of ZSM-5 employed as photocatalysis for degradation of methylene blue dye used in the presence of ultraviolet light. The final products were characterized by powder X-ray diffraction (XRD) and fourier transform infrared (FT-IR) method. According to the proposed mechanism for the photocatalytic degradation of methylene blue based on these results, it was found that the reaction followed from the first-order mechanism. The results indicated that rate constant for pure ZSM-5 was 9.3〖 ₓ10〗^(-3) (min-1). Furthermore the impregnated ZSM-5 having 12% zinc oxide demonstrated the highest photocatalytic activity with rate constant... 

    Design of a Ultrasonic system for a Multi-purpose Production Logging Tool (PLT)

    , M.Sc. Thesis Sharif University of Technology Hassannejad, Masoud (Author) ; Movahhedian Attar, Hamid (Supervisor)
    Abstract
    In the oil industry, a better understanding of the well condition leads to improve the management and increase the oil production. Production logging tools is a set of tools for measuring different parameters such as density, diameter and flow in oil and gas wells. These tools are considered among high-tech tools in the oil industry. The reason is that they should work in harsh conditions, i.e. high temperature about 170 ° C and pressure around 15000 psi, and at the same time give an accurate measurement of the quantity. Current production-logging tools measure the fluid velocity and the diameter of an oil well by individual mechanical tools, and the density by a radioactive densitometer. ... 

    Pulse repetition interval detection using statistical modeling

    , Article ACM International Conference Proceeding Series, 21 November 2016 through 24 November 2016 ; Volume Part F125833 , 2016 , Pages 100-104 ; 9781450347907 (ISBN) Amiri Tehrani Zade, A ; Pezeshk, A. M ; Sharif University of Technology
    Association for Computing Machinery  2016
    Abstract
    Pulse Repetition Interval (PRI) Modulation Detection is an important subsystem of a typical electronic warfare support system. In this paper, a robust, fast, and well designed structure for detection of simple and complex PRI modulations based on statistical and sequential analysis of Pulse Repetition Interval (PRI) is proposed. Accuracy and robustness of the technique against electromagnetic noise are demonstrated via simulations  

    Mechanical Systems Using Nonlinear State Feedback

    , M.Sc. Thesis Sharif University of Technology Zade Gharejehdaghi, Elahe (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    Disturbance is one of the inseparable components of the mechanical systems which cannot be avoided. In these systems a number of inner and outer sources exist which are the cause of disturbance. Abrupt changes in torque, uncertainty in parameters, mechanical impulses and external forces on robot’s parts all can be mentioned as examples which introduce disturbance that affects the output of mechanical and robotic systems. Therefore, disturbance rejection is considered indispensable in robotic control systems. There are number of problems which are associated with disturbance rejection. In several methods, mostly optimization based methods, system fails to completely reject the disturbance and... 

    A study on the effects bonding temperature and holding time on mechanical and metallurgical properties of al–cu dissimilar joining by DFW

    , Article Transactions of the Indian Institute of Metals ; Volume 70, Issue 1 , 2017 , Pages 125-131 ; 09722815 (ISSN) Safarzadeh, A ; Paidar, M ; Youzbashi zade, H ; Sharif University of Technology
    Springer India  2017
    Abstract
    The aim of this study was to evaluate the influence of bonding temperature and holding time on the metallurgical and mechanical properties for weld joints of 5 mm aluminum to copper using Sn interlayer. The bonding temperature varied from 500 to 600 °C whilst the holding time varied from 30 to 120 min under 8 MPa uniaxial load in 1 × 10−4 torr vacuum. The microstructure analysis, phase analysis and distribution of elements in the interface were performed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and element map analysis. It was found that diffusion welding parameters had a significant effect on shear strength. The attained data of tensile strength tests showed... 

    Adsorptive desulfurization of wild naphtha using magnesium hydroxide-coated ceramic foam filters in pilot scale: Process optimization and sensitivity analysis

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 152 , 2020 Salehi, E ; Askari, M ; Afshar, S ; Eidi, B ; Aliee, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Ultra-deep desulfurization for production of clean fuels is of great significance from environmental outlook. In this paper, adsorptive desulfurization (ADS) of wild naphtha was investigated in pilot scale using Mg(OH)2-impregnated aluminosilicate ceramic foam filters (ASCFs) as adsorbent. Effects of four operating parameters including temperature, pressure, adsorption bed length and initial sulfur concentration on sulfur removal efficiency of the process were studied via central composite design of experiment methodology. Sobol's sensitivity analysis was employed to quantitatively determine the impacts of the operating parameters on the removal performance of the separation system. The... 

    Corrigendum to “Adsorptive desulfurization of wild naphtha using magnesium hydroxide-coated ceramic foam filters in pilot scale: Process optimization and sensitivity analysis” [Chem. Eng. Process.: Process Intensif. 152 (2020) 107937] (Chemical Engineering and Processing - Process Intensification (2020) 152, (S0255270120303949), (10.1016/j.cep.2020.107937))

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 153 , 2020 Salehi, E ; Askari, M ; Afshar, S ; Eidi, B ; Aliee, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The authors regret to inform that an error occurred in the arrangement and display of three figures (Figs. 3, 4 and 5) of the article with the aforementioned title [1]. These figures are related to the binary interaction curves of the operating variables and the results of the sensitivity analyses. The correct figures are now presented via this corrigendum. It is worth mentioning that none of these mistakes affect the originality of the article's text and the presented results. The authors would like to apologise for any inconvenience caused. [1] E. Salehi, M. Askari, S. Afshar, B. Eidi, M. H. Aliee, Adsorptive Desulfurization of Wild Naphtha Using Magnesium Hydroxide – Coated Ceramic Foams... 

    Study of Methods and Design of the Electronic Section for Detection of Fraction of Different phases (Water, Oil and Gas) in Deviated Wells and Flow Measurement for each phase

    , M.Sc. Thesis Sharif University of Technology Ghasediye Fathabad, Hossein (Author) ; Movahedian Attar, Hamid (Supervisor)
    Abstract
    Most of the time there are three different materials in oil wells; Oil, water and gas. Measuring volume percentage and flow of the individual materials (phases) is an important issue, due to their critical role in extraction process control. Measuring tool should be able to measure flow and percentage of each phase in a case that they are separated (in deviated wells due to gravity). In addition, the measurement should be carried on in a high temperature and high pressure environment and in presence of corrosive substances. Most of previous researches on Multi-Phase Flow Meter (or MPFM) led to mechanical methods to measure flow and they usually use electrical impedance or permittivity for... 

    Exploring the Efficiency of Machine Learning Algorithms in Estimating Time-Variant Travel Time Distributions in River Basins

    , M.Sc. Thesis Sharif University of Technology Alizadeh Attar, Mehdi (Author) ; Danesh Yazdi, Mohammad (Supervisor)
    Abstract
    This study aimed to investigate the efficiency of machine learning algorithms in capturing the dynamics of water particles' age distribution and in estimating the time series of median travel time (MTT) in river basins. The mechanism of solute transport in a catchment does not follow the hydrograph shape of the catchment and depends on the spatial and temporal distribution of solute resident time. The equations governing the age dynamics of water particles discharged from a catchment have been presented analytically in recent research. These equations showed that the transfer of solutes depends on various factors, including climatic conditions, basin topography, and basin vegetation. Also,... 

    Digital Image Forensics

    , M.Sc. Thesis Sharif University of Technology Azarian-Pour, Sepideh (Author) ; Massoud, Babaie Zade (Supervisor)
    Abstract
    In the past few decades there has been rapid advance in the use of digital cameras in different fields of art and science. Photo editing softwares have provided extensive facilities for their users and graphic softwares have astonished people with artificial yet fabulous images. Under these circumstances, recognition and distinction of authentic images from digitally-manipulated ones have become a critically important but notoriously daunting task. Users of the internet and computers need to recognize authentic images from the manipulated ones, or distinguish a composite photo from an original one. Digital image forensicsa was born as a response to these demands and has so far provided...