Loading...
Search for: shodja--h--m
0.193 seconds

    Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects

    , Article International Journal of Solids and Structures ; Volume 49, Issue 5 , March , 2012 , Pages 759-770 ; 00207683 (ISSN) Shodja, H. M ; Ahmadzadeh Bakhshayesh, H ; Gutkin, M. Y
    2012
    Abstract
    The elastic behavior of an edge dislocation, which is positioned outside of a nanoscale elliptical inhomogeneity, is studied within the interface elasticity approach incorporating the elastic moduli and surface tension of the interface. The complex potential function method is used. The dislocation stress field and the image force acting on the dislocation are found and analyzed in detail. The difference between the solutions obtained within the classical-elasticity and interface-elasticity approaches is discussed. It is shown that for the stress field, this difference can be significant in those points of the inhomogeneity-matrix interface, where the radius of curvature is smaller and which... 

    A study of nanovoid, Griffith-Inglis crack, cohesive crack, and some associated interaction problems in fcc materials via the many body atomic scale FEM

    , Article Computational Materials Science ; Volume 45, Issue 2 , 2009 , Pages 275-284 ; 09270256 (ISSN) Shodja, H. M ; Kamalzare, M ; Sharif University of Technology
    2009
    Abstract
    Due to inadequacy of the classical continuum theories at the nano-scale when dealing with defects, stress concentrators, and relevant deformation phenomena in solids, a refined approach that can capture the discrete atomic features of solids is essential. The inability to detect the size effect, giving unrealistically high values for some components of the stress field right on the edge of the stress concentrators, and infirmity to address the complex interaction between small inhomogeneities, cracks and as such when they are only a few nanometers apart, are among some of the drawbacks of the classical approach. An atomistic study which employs atomic finite element method in conjunction... 

    Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities

    , Article European Journal of Mechanics, A/Solids ; Volume 26, Issue 4 , 2007 , Pages 647-658 ; 09977538 (ISSN) Shodja, H. M ; Ghazisaeidi, M ; Sharif University of Technology
    2007
    Abstract
    The examination of the effect of couple stresses on anti-plane electro-mechanical behaviour of piezoelectric media is of interest. The constitutive equations of piezoelectricity for a transversely isotropic piezoelectric medium of crystal class C6 v = 6   mm are derived in the context of couple stress elasticity. In this framework, a characteristic length appears in the formulation of anti-plane problems, by which examination of the size effect is possible. Also stemming from this approach is a new elasticity constant defined as the ratio of couple stress to the curvature, which based on the assumption of positive definiteness of the internal energy density, must be positive. For... 

    Axisymmetric time-harmonic response of a transversely isotropic substrate-coating system

    , Article International Journal of Engineering Science ; Volume 45, Issue 2-8 , 2007 , Pages 272-287 ; 00207225 (ISSN) Shodja, H. M ; Eskandari, M ; Sharif University of Technology
    2007
    Abstract
    By virtue of a method of displacement potentials, an analytical treatment of the response of a transversely isotropic substrate-coating system subjected to axisymmetric time-harmonic excitations is presented. In determination of the corresponding elastic fields, infinite line integrals with singular complex kernels are encountered. Branch points, cuts, and poles along the path of integration are accounted for exactly, and the physical phenomena pertinent to wave propagation in the medium are also highlighted. For evaluation of the integrals at the singular points, an accurate analytical residual theory is presented. Comparisons with the existing numerical solutions for a two-layered... 

    A thermoelasticity solution of sandwich structures with functionally graded coating

    , Article Composites Science and Technology ; Volume 67, Issue 6 , 2007 , Pages 1073-1080 ; 02663538 (ISSN) Shodja, H. M ; Haftbaradaran, H ; Asghari, M ; Sharif University of Technology
    2007
    Abstract
    An exact thermoelasticity solution for a two-dimensional thick composite consisting of homogeneous and functionally graded layers is presented. The thermomechanical properties of functionally graded layers are assumed to vary exponentially through the thickness while the Poisson's ratio is taken to be constant. The heat transfer problem is solved under steady state condition accounting for the heat convection. Utilizing the stress function the governing equation reduces to a fourth order inhomogeneous partial differential equation which is solved exactly using Fourier series method. A comparative study is done between two sandwich structures with homogeneous and functionally graded coatings,... 

    Inverse scattering problem of reconstruction of an embedded micro-/nano-size scatterer within couple stress theory with micro inertia

    , Article Mechanics of Materials ; Volume 103 , 2016 , Pages 123-134 ; 01676636 (ISSN) Goodarzi, A ; Fotouhi, M ; Shodja, H. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    As long as the size of the embedded scatterer in comparison to the internal length scale of its surrounding elastic matrix is large, then the linear sampling method (LSM) and singular sources method (SSM) can be used in conjunction with classical theory of elasticity to reconstruct the size of the scatterer with reasonable accuracy. On the other hand, for the micro-/nano-size scatterer this treatment ceases to hold due to the shortcomings of classical theory of elasticity. Moreover, in the realm of this theory, wave propagation through a homogeneous medium is nondispersive on the macro-scale even for high frequency waves. This outcome is incompatible with the practical observations. A remedy... 

    Electroelastic fields in interacting piezoelectric inhomogeneities by the electromechanical equivalent inclusion method

    , Article Smart Materials and Structures ; Volume 19, Issue 3 , 2010 ; 09641726 (ISSN) Shodja, H. M ; Kargarnovin, M. H ; Hashemi, R ; Sharif University of Technology
    2010
    Abstract
    Consider two piezoelectric ellipsoidal inhomogeneities of arbitrary size, orientation and material constants, which in turn are surrounded by an infinite isotropic medium. The system under consideration is subjected to far-field non-uniform electromechanical loadings. Based on the extension of the electromechanical equivalent inclusion method (EMEIM), the present paper develops a unified solution for determination of the associated electroelastic fields in the vicinity of interacting inhomogeneities. Accordingly, each of the piezoelectric inhomogeneities is broken down into two equivalent inclusions with proper polynomial eigenstrains and eigenelectric fields. The robustness and efficacy of... 

    A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes

    , Article Acta Mechanica ; Volume 222, Issue 1-2 , 2011 , Pages 91-101 ; 00015970 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes (CNTs) are viewed as rolled graphene. Thus, an appropriate formulation describing the behavior of CNTs must contain the key information about both their initial configuration as graphene and final configuration as CNT.On this note, to date, somemodels, in particular based on the Cauchy- Born rule, for the description of CNTs behavior exist. A simplifying assumption in some of these models is that the length and perimeter of the CNT equal the corresponding dimensions of the unrolled initial configuration, thus neglecting the induced hoop and longitudinal strains. On the other hand, the present work offers a purely nonlinear continuum model suitable for the description of the... 

    3D elastodynamic fields of non-uniformly coated obstacles: Notion of eigenstress and eigenbody-force fields

    , Article Mechanics of Materials ; Volume 41, Issue 9 , 2009 , Pages 989-999 ; 01676636 (ISSN) Shodja, H. M ; Delfani, M. R ; Sharif University of Technology
    2009
    Abstract
    Based on wave-function expansion, the time harmonic wave scattered by a circular and spherical inhomogeneity has been studied by numerous investigators. This method has also been employed to axisymmetrically coated circular and spherical inhomogeneities by some authors. When the geometry of the obstacle is not axisymmetric, the wave-function expansion is no longer applicable. In this paper, it is proposed to employ the dynamic equivalent inclusion method (DEIM) which is more general than the methods presented in the literature. It will be seen that DEIM may be used to treat a wide range of situations in a unified manner and is not bound to certain symmetries. The DEIM was first proposed by... 

    Scattering of plane elastic waves by a multi-coated nanofiber with deformable interfaces

    , Article International Journal of Solids and Structures ; Volume 141-142 , 2018 , Pages 195-218 ; 00207683 (ISSN) Shodja, H. M ; Taheri Jam, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The scattering of in-plane P- and SV-waves by a multi-coated circular nanofiber with deformable interfaces is of interest. To this end, in the present work, after introducing two kinds of interface momenta defined as the derivative of the interface excess kinetic energy with respect to the average and relative velocities at the interface, we extend the elastostatic theory of Gurtin et al. (1998) on deformable interfaces to the elastodynamic theory and derive the interface equations of motion using Hamilton principle. The effects of the generalized interface properties including the interface inertial parameters and interface stiffness towards stretch and slip on the dynamic stress... 

    Dual ideal shear strengths for chiral single-walled carbon nanotubes

    , Article International Journal of Non-Linear Mechanics ; Volume 120 , 2020 Delfani, M. R ; mohamadi Shodja, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    By considering a single-walled carbon nanotube (SWCNT) as a two-dimensional elastica obtained from the roll-up of a graphene sheet into a circular tube, the present paper develops a precise well-posed continuum theory for describing the entire torsional behavior of SWCNTs from an initial unloaded state through their ultimate levels of loading. In addition, the proposed approach can capture the dual ideal shear strengths as well as the asymmetrical behavior of chiral tubes with respect to the direction of the applied torsional loading. The theory incorporates a highly nonlinear constitutive equation which provides information about the nanoscopic morphological parameters of the tubes. As it... 

    Elastic/piezoelectric solids with electro-mechanical singular surfaces

    , Article Computational Mechanics ; Volume 40, Issue 3 , 2007 , Pages 547-567 ; 01787675 (ISSN) Shodja, H. M ; Kamali, M. T ; Sharif University of Technology
    Springer Verlag  2007
    Abstract
    When a tensor-valued function σ(x) is continuous in regions ∑0 and ∑1, but has a finite jump across the interface Γ01 between ∑0 and ∑1, then Γ01 is referred to as singular surface relative to the field σ (x). In this paper, it is intended to give a general treatment of three-dimensional static and free vibration analysis of bodies composed of multi-phase elastic and/or piezoelectric bodies with electro-mechanical singular surfaces. The geometry of the medium, boundary conditions, and the geometry of the singular surfaces may be arbitrary. The displacement field and the electric potential in each region are expressed in terms of functions composed of 3-D series and special 3-D functions. The... 

    Three-dimensional analysis of piezocomposite plates with arbitrary geometry and boundary conditions

    , Article International Journal of Solids and Structures ; Volume 40, Issue 18 , 2003 , Pages 4837-4858 ; 00207683 (ISSN) Shodja, H. M ; Kamali, M. T ; Sharif University of Technology
    Elsevier Ltd  2003
    Abstract
    In this paper, an accurate series solution in conjunction with an energy formulation for the treatment of piezocomposite plates with arbitrary geometry and aspect ratio, under both electrical and mechanical loadings are proposed. A remedy for dealing with nonhomogeneous boundary conditions is also presented. Through introduction of amending polynomials of order pk for the kth layer, the accuracy and convergence rate are dramatically improved. These polynomials ensure continuity of the generalized displacement fields across the interfaces, while their derivatives can have the required discontinuities up to a desired order. Moreover, depending on the nature of the physical problem under... 

    Ellipsoidal domain with piecewise nonuniform eigenstrain field in one of joined isotropic half-spaces

    , Article Journal of Elasticity ; Volume 98, Issue 2 , 2010 , Pages 117-140 ; 03743535 (ISSN) Avazmohammadi, R ; Hashemi, R ; Shodja, H. M ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    Consider an arbitrarily oriented ellipsoidal domain near the interface of an isotropic bimaterial space. It is assumed that a general class of piecewise nonuniform dilatational eigenstrain field is distributed within the ellipsoidal domain. Two theorems relevant to prediction of the nature of the induced displacement field for the interior and exterior points of the ellipsoidal domain are stated and proved. As a resultant the exact analytical expression of the elastic fields are obtained rigorously. In this work a new Eshelby-like tensor, A is introduced. In particular, the closed-form expressions for A associated with the interior points of spherical and cylindrical inclusion are derived.... 

    Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire

    , Article Philosophical Magazine ; Volume 94, Issue 5 , 11 February , 2014 , Pages 492-519 ; ISSN: 14786435 Enzevaee, C ; Gutkin, M. Y ; Shodja, H. M ; Sharif University of Technology
    2014
    Abstract
    The misfit strain within the core of a two-phase free-standing core-shell nanowire resulting in the generation of an edge misfit dislocation or an edge misfit dislocation dipole at the core-shell interface is considered theoretically within both the classical and surface/interface elasticity approaches. The critical conditions for the misfit dislocation generation are studied and discussed in detail with special attention to the non-classical surface/interface effect. It is shown that this effect is significant for fine cores of radius smaller than roughly 20 interatomic distances. The positive and negative surface/interface Lamé constants mostly make the generation of the misfit dislocation... 

    Interface effects on elastic behavior of an edge dislocation in a core-shell nanowire embedded to an infinite matrix

    , Article International Journal of Solids and Structures ; Volume 50, Issue 7-8 , 2013 , Pages 1177-1186 ; 00207683 (ISSN) Gutkin, M. Y ; Enzevaee, C ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the... 

    A transversely isotropic medium containing a penny-shaped crack subjected to a non-uniform axisymmetric loading via an anchored smooth rigid disk

    , Article Applied Mathematical Modelling ; Volume 45 , 2017 , Pages 491-504 ; 0307904X (ISSN) Ordookhani, A ; Kamali, M. T ; Shodja, H. M ; Sharif University of Technology
    2017
    Abstract
    A smooth rigid circular anchor disk encapsulated by a penny-shaped crack is embedded in and unbounded transversely isotropic medium. The lamellar rigid disk exerts a nonuniform axisymmetric loading to the upper face of the crack. With the aid of an appropriate stress function and Hankel transform, the governing equations are converted to a set of triple integral equations which in turn are reduced to a Fredholm integral equation of the second kind. For some transversely isotropic materials the normalized stiffness of the system falls well outside of the envelope pertinent to isotropic media. It is shown that mode I stress intensity factor is independent of the material properties and solely... 

    Piezoelectric composites with periodic multi-coated inhomogeneities

    , Article International Journal of Solids and Structures ; Volume 47, Issue 21 , October , 2010 , Pages 2893-2904 ; 00207683 (ISSN) Hashemi, R ; Weng, G. J ; Kargarnovin, M. H ; Shodja, H. M ; Sharif University of Technology
    2010
    Abstract
    A new, robust homogenization scheme for determination of the effective properties of a periodic piezoelectric composite with general multi-coated inhomogeneities is developed. In this scheme the coating does not have to be thin, the shape and orientation of the inclusion and coatings do not have to be identical, their centers do not have to coincide, their properties do not have to remain uniform, and the microstructure can be with the 2D elliptic or the 3D ellipsoidal inclusions. The development starts from the local electromechanical equivalent inclusion principle through the introduction of the position-dependent equivalent eigenstrain and electric field. Then with a Fourier series... 

    Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space

    , Article Journal of Engineering Mathematics ; Volume 97, Issue 1 , 2016 , Pages 83-100 ; 00220833 (ISSN) Shodja, H. M ; Eskandari, S ; Eskandari, M ; Sharif University of Technology
    Springer Netherlands  2016
    Abstract
    The propagation of shear horizontal surface acoustic waves (SHSAWs) in an inhomogeneous magneto-electro-elastic (MEE) half-space with 6-mm symmetry is studied. By virtue of both the direct approach and Stroh-formalism, the dispersion relations corresponding to two general cases of material properties variation are obtained. In the first case, it is assumed that all material properties involving the MEE properties and density vary similarly in depth, whereas, the second case considers identical variation for the MEE properties, which differs from the variation of the density. The non-dispersive SHSAW velocities pertinent to the homogeneous MEE media are obtained under eight different surface... 

    An atomistic based model for interacting crack and inhomogeneity in fcc metals under polynomial loading

    , Article 12th International Conference on Fracture 2009, ICF-12, 12 July 2009 through 17 July 2009, Ottawa, ON ; Volume 5 , 2009 , Pages 3597-3605 ; 9781617382277 (ISBN) Shodja, H. M ; Tehranchi, A ; Ghassemi, M ; Sharif University of Technology
    2009
    Abstract
    Classical continuum mechanics fails to give accurate solution near the crack tip, moreover, it implies that a solid is able to sustain an infinite stress at the Griffith-Inglis crack tips. Among other critical issues is the inability of the classical approach to sense the size effect. For these reasons, for more in-depth understandings and accurate behavioral predictions, it is essential to develop some atomistic methods which properly accounts, not only for the structure but also the long and short range atomic interactions effectively. In this work the interaction of inhomogeneity and crack under polynomial loading is simulated by using the many body Rafii-Tabar and Sutton potential...