Loading...
Search for: soltanian--mohammad
0.132 seconds

    Surface Waves Propagation in a Piezoelectric/Piezomagnetic Half Space Overlaid With a Finnite Layer

    , M.Sc. Thesis Sharif University of Technology Soltanian Fard, Mohammad Amin (Author) ; Skandari, Morteza (Supervisor)
    Abstract
    The propagation of the surface waves in the piezoelectric (PE) and piezomagnetic (PM) layered media are studied. The surface BG waves in the PE half-spaces overlaid by a layer are considered and the closed-form dispersion relations for the open and short electromechanical surface boundary conditions are obtained. The numerical results for the phase velocities and the electromechanical coupling factor for PZT-2 and PZT-8 media are presented. Furthermore, the propagation of the Rayleigh waves in the PE-PM layered media is considered. The effects of the imperfect bonding between the half-space and the layer are discussed. Later, we study the propagation of the Rayleigh waves in 4 different... 

    Hierarchical concept score post-processing and concept-wise normalization in CNN based video event recognition

    , Article IEEE Transactions on Multimedia ; Volume: 21 , Issue: 1 , Jan , 2019 , 157 - 172 ; 15209210 (ISSN) Soltanian, M ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    This paper is focused on video event recognition based on frame level CNN descriptors. Using transfer learning, the image trained descriptors are applied to the video domain to make event recognition feasible in scenarios with limited computational resources. After fine-tuning of the existing Convolutional Neural Network (CNN) concept score extractors, pre-trained on ImageNet, the output descriptors of the different fully connected layers are employed as frame descriptors. The resulting descriptors are hierarchically post-processed and combined with novel and efficient pooling and normalization methods. As major contributions of this work to the video event recognition, we present a... 

    Blind consecutive extraction of multi-carrier spread spectrum data from digital images

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 1835-1839 ; 9781509059638 (ISBN) Soltanian, M ; Ghaemmaghami, S ; Sharif University of Technology
    2017
    Abstract
    We address blind extraction of spread spectrum data embedded in a digital image. The multicarrier iterative generalized least-squares (M-IGLS) data extraction algorithm is the basis of our study and a new algorithm based on M-IGLS is introduced in which both computational complexity and data extraction accuracy are enhanced. In the new method named multicarrier consecutive iterative generalized least-squares (M-CIGLS) algorithm, neither the cover image nor the spread spectrum carriers are required for the hidden data extraction. Additionally, knowledge of the number of carriers is no more needed. Simulation results show the ability of this method to extract data with a superior performance... 

    Video event recognition leveraging hierarchy of semantic concepts

    , Article 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 2 May 2017 through 4 May 2017 ; 2017 , Pages 1549-1553 ; 9781509059638 (ISBN) Soltanian, M ; Ghaemmaghami, S ; Sharif University of Technology
    2017
    Abstract
    A new method for exploiting the semantic hierarchical structure of visual concepts in video event recognition task is proposed in this paper. The visual concepts are detected using the readily available Convolutional Neural Network (CNN) structures which make the recognition system extremely efficient in cases with limited hardware resources. The employed CNNs assign scores to each of the predetermined visual concepts in each video frame and the resulting concept scores are fed to the proposed hierarchical post-processing scheme. Our post-processing module takes advantage of the semantic hierarchy of the concepts to enhance the recognition accuracy of event recognition. The hierarchical... 

    Hierarchical concept score postprocessing and concept-wise normalization in CNN-based video event recognition

    , Article IEEE Transactions on Multimedia ; Volume 21, Issue 1 , 2019 , Pages 157-172 ; 15209210 (ISSN) Soltanian, M ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper is focused on video event recognition based on frame level convolutional neural network (CNN) descriptors. Using transfer learning, the image trained descriptors are applied to the video domain to make event recognition feasible in scenarios with limited computational resources. After fine-tuning of the existing CNN concept score extractors, pretrained on ImageNet, the output descriptors of the different fully connected layers are employed as frame descriptors. The resulting descriptors are hierarchically postprocessed and combined with novel and efficient pooling and normalization methods. As major contributions of this paper to the video event recognition, we present a... 

    Hierarchical concept score postprocessing and concept-wise normalization in cnn-based video event recognition

    , Article IEEE Transactions on Multimedia ; Volume 21, Issue 1 , 2019 , Pages 157-172 ; 15209210 (ISSN) Soltanian, M ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This paper is focused on video event recognition based on frame level convolutional neural network (CNN) descriptors. Using transfer learning, the image trained descriptors are applied to the video domain to make event recognition feasible in scenarios with limited computational resources. After fine-tuning of the existing CNN concept score extractors, pretrained on ImageNet, the output descriptors of the different fully connected layers are employed as frame descriptors. The resulting descriptors are hierarchically postprocessed and combined with novel and efficient pooling and normalization methods. As major contributions of this paper to the video event recognition, we present a... 

    Energy Management in Active Distribution System Considering Shared Energy Storage System and Peer-to-Peer Trading using Robust Optimization

    , M.Sc. Thesis Sharif University of Technology Soltanian, Hamid (Author) ; Hosseini, Hamid (Supervisor)
    Abstract
    Peer-to-peer (P2P) tradings are one of the energy management techniques that economically benefit prosumers and they can transact their energy as goods and services. In this work, a robust framework is proposed to address optimal energy management of an energy community considering peer-to-peer and peer-to-grid (P2G) tradings. Adaptive distributionally robust optimization (ADRO) is used to minimizing total community cost. Uncertainties in the load and output power of renewable energy sources (RES) are modeled by using this method. The production cost of prosumers and shared energy storage costs are considered as objective function. The problem is formulated as a bi-level minimum-maximum... 

    Video Analysis based on Visual Events

    , Ph.D. Dissertation Sharif University of Technology Soltanian, Mohammad (Author) ; Ghaemmaghami, Shahrokh (Supervisor)
    Abstract
    Recognition of complex visual events has attracted much interest in recent years. Compared to somehow similar tasks like action recognition, event recognition is much more complex, primarily because of huge intra-class variation of events, variable video durations, lack of pre-imposed video structures, and severe preprocessing noises. To deal with these complexities and improve the state of the art approaches to the problem of video understanding, this thesis is focused on video event recognition based on frame level CNN descriptors. Using transfer learning, the image trained descriptors are applied to the video domain to make event recognition feasible in scenarios with limited... 

    Spatio-temporal VLAD encoding of visual events using temporal ordering of the mid-level deep semantics

    , Article IEEE Transactions on Multimedia ; Volume 22, Issue 7 , 2020 , Pages 1769-1784 Soltanian, M ; Amini, S ; Ghaemmaghami, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Classification of video events based on frame-level descriptors is a common approach to video recognition. In the meanwhile, proper encoding of the frame-level descriptors is vital to the whole event classification procedure. While there are some pretty efficient video descriptor encoding methods, temporal ordering of the descriptors is often ignored in these encoding algorithms. In this paper, we show that by taking into account the temporal inter-frame dependencies and tracking the chronological order of video sub-events, accuracy of event recognition is further improved. First, the frame-level descriptors are extracted using convolutional neural networks (CNNs) pre-trained on ImageNet,... 

    Entropy Analysis and its Application in Interconnection

    , M.Sc. Thesis Sharif University of Technology Soltanian, Abbas (Author) ; Baniasadi, Amir Ali (Supervisor)
    Abstract
    Reducing interconnection costs on chip and power consumption are important issues in designing processors. In a processor, a significant amount of total chip power is consumed in the interconnection. The goal of this research is to find a way to reduce power consumption in the interconnection. In this project we propose a new data sending method in which an LZW-like compression algorithm is exploited to compress data before sending it over the interconnection. Then, the codes of the compressed data are sent through the interconnection in order to reduce the number of dynamic cycles. The simulation results show that using this method can reduce 52% of dynamic power consumption  

    Sparse representation-based super-resolution for diffusion weighted images

    , Article 21st Iranian Conference on Biomedical Engineering, ICBME ; 26-28 November , 2014 , pp. 12-16 ; ISBN: 9781479974177 Afzali, M ; Fatemizadeh, E ; Soltanian-Zadeh, H ; Sharif University of Technology
    2014
    Abstract
    Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure. It can be used to evaluate fiber bundles in the brain. However, clinical acquisitions are often low resolution. This paper proposes a method for improving the resolution using sparse representation. In this method a non-diffusion weighted image (bO) is utilized to learn the patches and then diffusion weighted images are reconstructed based on the trained dictionary. Our method is compared with bilinear, nearest neighbor and bicubic interpolation methods. The proposed method shows improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM)  

    Interpolation of orientation distribution functions (ODFs) in Q-ball imaging

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 213-217 ; 9781467331302 (ISBN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    2012
    Abstract
    Diffusion tensor magnetic resonance imaging (DTMRI) is a non-invasive method for investigating the brain white matter structure. It can be used to evaluate fiber bundles in the brain but in the regions with crossing fibers, it fails. To resolve this problem, high angular resolution diffusion imaging (HARDI) with a large number of diffusion encoding directions is used and for reconstruction, the Q-ball method is applied. In this method, orientation distribution function (ODF) of fibers can be calculated. Mathematical models play a crucial role in the field of ODF. For instance, in registering Q-ball images for applications like group analysis or atlas construction, one needs to interpolate... 

    High angular resolution diffusion image registration

    , Article Iranian Conference on Machine Vision and Image Processing, MVIP ; Sept , 2013 , Pages 232-236 ; 21666776 (ISSN) ; 9781467361842 (ISBN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    Diffusion Tensor Imaging (DTI) is a common method for the investigation of brain white matter. In this method, it is assumed that diffusion of water molecules is Gaussian and so, it fails in fiber crossings where this assumption does not hold. High Angular Resolution Diffusion Imaging (HARDI) allows more accurate investigation of microstructures of the brain white matter; it can present fiber crossing in each voxel. HARDI contains complex orientation information of the fibers. Therefore, registration of these images is more complicated than the scalar images. In this paper, we propose a HARDI registration algorithm based on the feature vectors that are extracted from the Orientation... 

    Effect of different diffusion maps on registration results

    , Article 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings ; 2011 ; 9781457715358 (ISBN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    2011
    Abstract
    In this paper, we compare registration results obtained using different diffusion maps extracted from diffusion tensor imaging (DTI). Fractional Anisotropy (FA) and Ellipsoidal Area Ratio (EAR) are two diffusion maps (indices) that may be used for image registration. First, we use FA maps to find deformation matrix and register diffusion weighted images. Then, we use EAR maps and finally we use both of FA and EAR maps to register diffusion weighted images. The difference between FA values before deformation and after registration using the FA alone or EAR alone has a median of 0.57 and using both of them has a median of 0.29. Therefore, the results of registration using both of the FA and... 

    Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model

    , Article Journal of Neuroscience Methods ; Volume 253 , 2015 , Pages 28-37 ; 01650270 (ISSN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    2015
    Abstract
    Background: Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. New method: This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. Results: The method is applied on the synthetic and real DWI data of control and... 

    Sparse registration of diffusion weighted images

    , Article Computer Methods and Programs in Biomedicine ; Volume 151 , 2017 , Pages 33-43 ; 01692607 (ISSN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    2017
    Abstract
    Background and objective Registration is a critical step in group analysis of diffusion weighted images (DWI). Image registration is also necessary for construction of white matter atlases that can be used to identify white matter changes. A challenge in the registration of DWI is that the orientation of the fiber bundles should be considered in the process, making their registration more challenging than that of the scalar images. Most of the current registration methods use a model of diffusion profile, limiting the method to the used model. Methods We propose a model-independent method for DWI registration. The proposed method uses a multi-level free-form deformation (FFD), a sparse... 

    Fuzzy edge preserving smoothing filter using robust region growing

    , Article 2006 IEEE International Conference on Fuzzy Systems, Vancouver, BC, 16 July 2006 through 21 July 2006 ; 2006 , Pages 1748-1755 ; 10987584 (ISSN); 0780394887 (ISBN); 9780780394889 (ISBN) Mehrtash, A ; Vahdat, S ; Soltanian Zadeh, H ; Sharif University of Technology
    2006
    Abstract
    Smoothing, while preserving edges, has always been a major challenge in image processing. In this paper, we propose a new approach that uses segmentation in order to avoid inter-region smoothing thus preserving the edges. It is common to smooth the image prior to region growing. The opposite procedure does not work properly in the presence of noise since region growing is very noise sensitive. To overcome this difficulty we adapted a robust region growing algorithm. Since region growing is very resource consuming, we do not perform it for every pixel. Instead, we divide the image into a number of overlapping blocks for which we carry out the segmentation. Then, we use the results for some of... 

    Computer Aided Prognosis of Epileptic Patients Using Multi-Modality Data and Artificial Intelligence Techniques

    , M.Sc. Thesis Sharif University of Technology Latifi-Navid, Masoud (Author) ; Soltanian-Zadeh, Hamid (Supervisor)
    Abstract
    Abnormality detection and prognosis of epileptic patients with artificial intelligence and machine learning techniques is still in its early experimental stages. Surgical candidacy determination for epilepsy depends on the clinical actions which involve an intracranial electrode implantation followed by prolonged electrographic monitoring (EEG phase II) .This invasive test is very costly, painful and time consuming. Here the goal is integration of the two following paradigms: 1-Non invasive multimodality data of epilepsy. 2- Artificial intelligence and machine learning techniques. We have used human brain multi-modality database system that includes patient’s demographics, clinical and EEG... 

    Design and Performance Analysis of a Reversible Axial Flow Fan and Study of Symmetric Profile Effects

    , M.Sc. Thesis Sharif University of Technology Soltanian, Salman (Author) ; Afshin, Hossein (Supervisor) ; Farhanieh, Bijan (Co-Advisor)
    Abstract
    Smoke must be exhausted, as the first action, in probable fire in subways, underground transportation systems and mines in order to survive people exposed to it. To achieving this purpose, the axial fan should be used to move the smoke to the exit lines. These fans should be had same performances in suction and discharge directions (main and reverse directions). This means flow rate should be the same at main and reverse directions. Therefore, fully reversible axial flow fans should be used in emergency ventilations. The fully reversible axial flow fans have same efficiencies in suction and discharge directions. The symmetric profiles should be used in manufacturing of the blades of these... 

    Experimental Investigation for FINDING a Suitable Additive (Nanoparticle) to Design Required Elastic Cement for Iranian Oil/Gas Wells

    , M.Sc. Thesis Sharif University of Technology Khojastefar, Abdorahim (Author) ; Taghikhani, Vahid (Supervisor) ; Soltanian, Hamid (Supervisor) ; Moghadasi, Jamshid (Supervisor) ; Samsam Sokheiravi, Mohammad (Co-Advisor)
    Abstract
    Previous studies indicate that increasing cement compressive strength can’t prevent loss of zonal isolation and casing collapse in worse case during well operations or formation loading. Since standard cements with high compressive strength can’t solve these problems, so application of elastic cements with low Young’s modulus and high Poisson’s ratio becomes important. These cements sustain generated stresses during well operations and prevent creation of point loads when formation creep occurs. For this purpose, a new additive was designed in order to improve the cement elasticity and tensile strength. It is a nanoparticle and named EX-RIPI (by Research Institute of Petroleum Industry,...