Loading...
Search for:
mercury
0.118 seconds
Lithium Isotopes Separation by Amalgam Electrolysis Method
, M.Sc. Thesis Sharif University of Technology ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor)
Abstract
Lithium has two stable isotopes naturally including 6Li at 7.5% and 7Li at 92.5% relative abundance. In spite of the similarities of lithium isotopes in common chemical reactions, they have some completely distinctive behaviors in nuclear reactions. 6Li has considerable neutron cross section capturing in thermal neutron range about 945 barns while this feature for 7Li is insignificant about 0.037 barns. This difference makes them to play different roles in nuclear uses. 7LiOH is applied for pH adjustment of coolant in light water reactors. 6Li is not only used as a shielding material against thermal neutrons, but also is known as a source of tritium in the blanket of fusion reactors which...
Fabrication and Experimental Investigation of Rotary Agnetohydrodynamic Micropump
, M.Sc. Thesis Sharif University of Technology ; Behshad Shafii, Mohammad (Supervisor)
Abstract
Considering the advantages and disadvantages of reported micropumps, we aimed to introduce a novel idea to diminish the disadvantages and promote the advantages of Magnetohydrodynamic (MHD) micropumps. This novel idea operates based on a mercury slug rotation in a circular microchannel. This cyclic motion of the mercury slug which is similar to a piston, push the fluid in the microchannel and pump the flow. However, to bring this idea into the practice, it must be integrated with a specific valve. Fluid has not to go through this specific valve. In contrary, mercury slug has to pass across this valve. These two specifications must be considered during the design process of the valve. On the...
Design and Fabrication of a Novel Mercury Micropump Actuated Electeromagneticaly
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor)
Abstract
Considering the advantages and disadvantages of reported micropumps, we aimed to introduce a novel idea to diminish the disadvantages and promote the advantages of PiezoElectric micropumps. This novel idea operates based on a mercury slug actuation in a microchannel. This cyclic motion of the mercury slug which is similar to a piston, push the fluid in the microchannel and pump the flow. However, to bring this idea into the practice, a control system must be designed. This system contains: LABVIEW code, DAQ board & a switching Board. The pattern of actuating mercury is drawn in LABVIEW. DAQ Board produces electrical signals according to LABVIEW code. Switching board will transform the...
Numerical Simulation of Rotary Magnetohydrodynamic Micropump
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor)
Abstract
First by reviewing some built micropumps, the importance of rotary magnetohydrodynamic micropump has been highlighted. Then some information about the performance and rules applied to these specific micropumps has been provided. Based on the research, the necessity of using transient flow relations for analyzing the procedure of these micropumps would become crucial. The next step would be extracting the information out of dimensionlessrelations of magnetohydrodynamic theory and dimension less equations of momentum in transientsingle-phase fluid flow which is moved by theoverall Lorentzforce in between 2 parallel surfaces. It would be done in two state of using constantcurrent source and...
Design and Fabrication of Reciprocating Micropumps with Actuated Fluid Slug
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor)
Abstract
Design, fabrication and performance of the reciprocating micropumps with actuated fluid slug have been investigated. In these micropumps, pumping principle is based on reciprocating movement of a fluid slug. The fluid slug must be conductive in magnetohydrodaynamic micropump to be actuated by Lorentz force and have good magnetic properties in ferrofluidic micropumps to be actuated by an external magnetic field.
On the other hand, a theory is developed in ahead of design and fabrication process to diagnose the critical and the most influential parameters. Magnetohydrodynamic micropumps in 4 distinict design using nozzle-diffuser element, passive ball valve and active mercury valve have...
On the other hand, a theory is developed in ahead of design and fabrication process to diagnose the critical and the most influential parameters. Magnetohydrodynamic micropumps in 4 distinict design using nozzle-diffuser element, passive ball valve and active mercury valve have...
Electrodeposition of gold nanotubes in porous templates
, Ph.D. Dissertation Sharif University of Technology ; Ghorbani, Mohammad (Supervisor) ; Dolati, Abolghasem (Supervisor) ; Vosoughi, Manouchehr (Co-Advisor)
Abstract
Detection and determination of ultra-trace electroactive materials using electrochemical methods have been widely employed by researchers since they offer a fast, easy and reliable approach. In this way, developing of new nanoelectrodes with special and unique properties plays a profound role on the achievement of better results.
Gold nanoelectrode ensembles are one of the most important nanoelectrodes which due to the high surface area, chemical, electrochemical and physical stability, and integration of a large number of individual nanoelectrodes, introduce excellent opportunities to be employed as promising nanoelectrodes in determinations applications.
In this work, preparation...
Gold nanoelectrode ensembles are one of the most important nanoelectrodes which due to the high surface area, chemical, electrochemical and physical stability, and integration of a large number of individual nanoelectrodes, introduce excellent opportunities to be employed as promising nanoelectrodes in determinations applications.
In this work, preparation...
Experimental Study of Movement of Mercury Droplets in Micro Channel by Electromagnetic Force
, M.Sc. Thesis Sharif University of Technology ; Afshin, Hossein (Supervisor)
Abstract
As today's tremendous advance occurred in biotechnology and nanotechnology, the microfluidic devices made a new success that was not possible with the traditional equipments. It was useful in such a way that by using a microliter volume of that fluid, we could have the ability to use it in biologics, medicine, aerospace, cooling electronic systems and medical discovery. One of the main component of fluidic microsystems are micropumps in which they divide into two types. Reciprocating micropumps have been worked by stimulating electromagnetic micropumps which is based on Lorentz law. In this project, we try to investigate the impact of effective parameters in the movement of the mercury mass....
Numerical Simulation of Magneto Mercury Reciprocating Micropump
, M.Sc. Thesis Sharif University of Technology ; Shafii, Mohammad Behshad (Supervisor)
Abstract
In this investigation Magneto Mercury Reciprocating Micrpump (MMRM) the combination of Magneto-Hydrodynamic and Reciprocating micropumps has been analyzed. To achieve the analytical and numerical solution of one-tank and three-tank MMRM, the momentum, continuity, volume fraction and magnetohydrodynamic equations have been presented. The dimensionless analytical solution of one-phase and two-phase three dimensional MHD flow in the condition of using constant current and potential electrical source, has been offered.
The boundary between mercury and air has been tracked via VOF method in OpenFOAM software. VOF equation has been solved by explicit method with variable time step and maximum...
The boundary between mercury and air has been tracked via VOF method in OpenFOAM software. VOF equation has been solved by explicit method with variable time step and maximum...
Colorimetric Determination of Tizanidine and Mercury (II) Based on Aggregation and Anti-aggregation of Gold Nanoparticles
, M.Sc. Thesis Sharif University of Technology ; Hormozi Nezhad, Mohammad Reza (Supervisor)
Abstract
In the first section of this research, we have developed a simple and rapid colorimetric method for determination of tizanidine using citrate capped gold nanoparticles. Under optimal conditions, the AuNPs easily aggregate upon addition of tizanidine and the solution color changes from red to gray. This color change was followed using a UV-Vis spectrophotometer. The detection limit was calculated to be 0.48 µM. The method was successfully applied for determination of tizanidine in Spalex© tablets. In the last section, the anti-aggregation effect of Hg(II) on the tizanidine-AuNPs system was utilized with the aim of developing a colorimetric method for detection of Hg(II). Addition of...
Experimental Investigation of the Effective Parameters on the Removal of the Heavy Metal Ions from Salty Water by Using the Magnetic Nanoparticles Supported on Activated Carbons
, Ph.D. Dissertation Sharif University of Technology ; Shayegan, Jalaloddin (Supervisor) ; Goodarznia, Iraj (Supervisor) ; Zabihi, Mohammad (Co-Supervisor)
Abstract
In the present thesis, the adsorption ability of the functionalized magnetic nano-particles supported on the walnut and almond based activated carbons was evaluated to prepare the efficient and low cost adsorbents for removal of Pb(II), Cr(VI) and Hg(II) ions aqueous solutions in the presence of salinity. The activated carbons were derived from almond and walnut shell by the physical activation method. The functionalized nano-magnetic activated carbons were synthesized by co-precipitation consisting of AC(almond)@Fe3O4@SiO2-NH2-COOH and AC(walnut)@Fe3O4-NH2-COOH which were modified by the oxygen containing functional groups to enhance the adsorption capacity. The prepared carbonaceous...