Sharif Digital Repository / Sharif University of Technology
    • [Zoom In]
    • [Zoom Out]
  • Page 
     of  0
  • [Previous Page]
  • [Next Page]
  • [Fullscreen view]
  • [Close]
 
Advances in heuristic signal processing and applications

Cataloging brief

Advances in heuristic signal processing and applications
Author :  
Publisher :   Springer
Pub. Year  :   2013
Subjects :   Signal processing Digital techniques Data processing Computer science Artificial...
Call Number :   ‭TK 5102 .9 .A38 2013

Find in content

sort by

Bookmark

  • Advances in Heuristic Signal Processing and Applications (3)
    • Preface (5)
    • Contents (10)
    • Contributors (12)
  • Chapter 1: Nonconvex Optimization via Joint Norm Relaxed SQP and Filled Function Method with Application to Minimax Two-Channel Linear Phase FIR QMF Bank Design (15)
    • 1.1 Introduction (15)
    • 1.2 Problem Formulation (17)
    • 1.3 Joint Norm Relaxed Sequential Quadratic Programming and Filled Function Method (21)
      • 1.3.1 Filled Function Method (21)
      • 1.3.2 Norm Relaxed Sequential Quadratic Programming (24)
    • 1.4 Computer Numerical Simulation Results (26)
    • 1.5 Conclusions (28)
    • References (29)
  • Chapter 2: Robust Reduced-Rank Adaptive LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Parameters (31)
    • 2.1 Introduction (31)
    • 2.2 System Model (33)
    • 2.3 Problem Statement and Design of Adaptive Beamformers (34)
      • 2.3.1 Adaptive LCMV Beamformers (34)
      • 2.3.2 Robust Adaptive LCMV Beamformers (35)
    • 2.4 Robust Reduced-Rank Beamforming Based on Joint Iterative Optimization of Parameters (36)
    • 2.5 Adaptive Algorithms (38)
      • 2.5.1 Stochastic Gradient Algorithm (38)
      • 2.5.2 Recursive Least-Squares Algorithms (39)
      • 2.5.3 Complexity of RJIO Algorithms (41)
      • 2.5.4 Rank Adaptation (42)
    • 2.6 Simulations (43)
    • 2.7 Conclusions (46)
    • References (47)
  • Chapter 3: Designing OFDM Radar Waveform for Target Detection Using Multi-objective Optimization (49)
    • 3.1 Introduction (50)
    • 3.2 Problem Description and Modeling (53)
      • 3.2.1 OFDM Signal Model (54)
      • 3.2.2 Measurement Model (54)
      • 3.2.3 Statistical Assumptions (56)
    • 3.3 Sparse-Estimation Approach (56)
      • 3.3.1 Sparse Model (57)
      • 3.3.2 Sparse Recovery (57)
    • 3.4 Adaptive Waveform Design (58)
      • 3.4.1 Maximizing the Mahalanobis Distance (59)
      • 3.4.2 Minimizing the Weighted Trace of CRB Matrix (59)
      • 3.4.3 Minimizing the Upper Bound on Sparse Error (61)
      • 3.4.4 Multi-objective Optimization (63)
    • 3.5 Numerical Results (63)
      • 3.5.1 Results of the MOO Problem (65)
      • 3.5.2 Improvement in Detection and Estimation Performance (68)
      • 3.5.3 Redistributions of Signal and Target Energies (69)
    • 3.6 Conclusions (72)
    • References (73)
  • Chapter 4: Multi-object Tracking Using Particle Swarm Optimization on Target Interactions (76)
    • 4.1 Introduction (76)
    • 4.2 Particle Swarm Optimization (78)
    • 4.3 PSO-Based Object Tracking (79)
      • 4.3.1 Multi-patch Based Object Tracking Using Region Covariance (79)
      • 4.3.2 Foreground Prior (81)
      • 4.3.3 Foreground Segmentation (81)
      • 4.3.4 Re-diversification of the Swarm (82)
    • 4.4 Multiple Object Tracking (83)
      • 4.4.1 Multiple Object Tracking by Multiple Particle Swarms (84)
      • 4.4.2 Refinement of the Tracklets by Particle Swarm Optimization (86)
    • 4.5 Experiments (87)
    • 4.6 Conclusions (90)
    • References (90)
  • Chapter 5: A Comparative Study of Modified BBO Variants and Other Metaheuristics for Optimal Power Allocation in Wireless Sensor Networks (92)
    • 5.1 Introduction (93)
    • 5.2 Problem Statement (94)
      • 5.2.1 Fusion Problem Formulation (95)
      • 5.2.2 Node Decision Rules (96)
      • 5.2.3 Transmission of Local Decisions (96)
      • 5.2.4 The Decision Fusion Problem (97)
    • 5.3 Optimal Power Allocation (98)
      • 5.3.1 Independent Observations (98)
      • 5.3.2 Correlated Observations (100)
    • 5.4 Constrained BBO for Optimal Power Allocation (102)
      • 5.4.1 Standard Unconstrained Biogeography-Based Optimization (BBO) (102)
      • 5.4.2 Constrained Optimization (105)
      • 5.4.3 Description of the Proposed Algorithms (108)
        • 5.4.3.1 Solution Representation (108)
        • 5.4.3.2 Objective Function (109)
        • 5.4.3.3 Constraint Handling Approach (109)
        • 5.4.3.4 Individual Initialization (109)
        • 5.4.3.5 Individual Stochastic Ranking (110)
        • 5.4.3.6 Population Update Strategy (111)
        • 5.4.3.7 Selection (113)
        • 5.4.3.8 Elitism (113)
    • 5.5 Experimental Results and Analysis (114)
      • 5.5.1 Parameter Configuration (115)
      • 5.5.2 Numerical Results (116)
    • 5.6 Conclusion (122)
    • References (122)
  • Chapter 6: Joint Optimization of Detection and Tracking in Adaptive Radar Systems (124)
    • 6.1 Introduction (124)
      • 6.1.1 Related Work (127)
      • 6.1.2 Chapter Outline (129)
    • 6.2 Offline Performance Evaluation of Tracking Algorithms (130)
      • 6.2.1 Target and Measurement Models (132)
      • 6.2.2 NSPP Techniques for the PDAF (133)
      • 6.2.3 The Modified Riccati Equation (MRE) (134)
      • 6.2.4 The Hybrid Conditional Averaging (HYCA) Algorithm (135)
    • 6.3 NSPP-Based Detector Threshold Optimization (136)
      • 6.3.1 Static Threshold Optimization (STOP) (137)
      • 6.3.2 Dynamic Threshold Optimization (DTOP) (139)
        • 6.3.2.1 MRE-Based Dynamic Threshold Optimization (139)
        • 6.3.2.2 HYCA-Based Dynamic Threshold Optimization (142)
    • 6.4 Simulations (143)
      • 6.4.1 Static Threshold Optimization Based on MRE and HYCA Algorithms (144)
      • 6.4.2 Experiment 1: Comparison with Heuristic Approaches (146)
      • 6.4.3 Experiment 2: Comparison of MRE-Based DTOP Schemes (150)
    • 6.5 Conclusion and Future Directions (153)
    • References (154)
  • Chapter 7: Iterative Design of FIR Filters (157)
    • 7.1 Introduction (157)
    • 7.2 Particle Swarm Optimization with Quantum Infusion (159)
    • 7.3 Digital FIR Filter (160)
    • 7.4 FIR Filter Design Using PSO-QI (161)
    • 7.5 Studies and Results (162)
    • 7.6 Conclusion (176)
    • References (177)
  • Chapter 8: A Metaheuristic Approach to Two Dimensional Recursive Digital Filter Design (179)
    • 8.1 Introduction (179)
    • 8.2 The Design Problem Formulation (181)
    • 8.3 An Outline of IWO Algorithm (183)
      • 8.3.1 Generation of an Initial Population (183)
      • 8.3.2 Reproduction (184)
      • 8.3.3 Dispersal of Seeds Through the Search Space (184)
      • 8.3.4 Competitive Exclusion (184)
    • 8.4 Differential Q-Learning (185)
    • 8.5 IIWO: The Proposed Approach (186)
      • 8.5.1 Initialization (187)
      • 8.5.2 Adaptive Selection of Memes (187)
      • 8.5.3 Invasive Weed Optimization (188)
      • 8.5.4 State Assignment (188)
      • 8.5.5 Updating the Q-table (188)
    • 8.6 The Filter Design Experiments and Results (188)
    • 8.7 Conclusions (192)
    • References (193)
  • Chapter 9: A Survey of Kurtosis Optimization Schemes for MISO Source Separation and Equalization (195)
    • 9.1 Introduction (196)
      • 9.1.1 Channel Equalization and Source Separation (196)
      • 9.1.2 Why Kurtosis? (197)
      • 9.1.3 Historical Overview (198)
      • 9.1.4 Chapter Outline (199)
      • 9.1.5 Mathematical Notations (199)
    • 9.2 Blind Source Separation: Model and Assumptions (199)
      • 9.2.1 Convolutive Mixtures (200)
      • 9.2.2 Instantaneous Mixtures (201)
    • 9.3 Deflationary Source Separation (201)
      • 9.3.1 Source Extraction with MISO Contrast Functions (202)
      • 9.3.2 Deflation Procedure (204)
    • 9.4 Optimization Methods (205)
      • 9.4.1 Gradient Search Algorithms (206)
      • 9.4.2 Projected Gradient Search (207)
      • 9.4.3 Gradient Algorithm with Filter Parametrization (208)
      • 9.4.4 Approximate Newton Search: The FastICA Algorithm (210)
        • 9.4.4.1 Derivation of the Algorithm (210)
        • 9.4.4.2 FastICA as a Constant Step-Size Gradient Algorithm (212)
      • 9.4.5 Algorithms with Optimal Step-Size Selection (214)
        • 9.4.5.1 Step-Size Optimization (214)
        • 9.4.5.2 Algebraic Exact Line Search: The RobustICA Algorithm (215)
      • 9.4.6 Algorithms Based on Reference Signals (218)
        • 9.4.6.1 Quadratic Contrast Functions (218)
        • 9.4.6.2 Monotonically Convergent Algorithms Based on Quadratic Contrasts (220)
    • 9.5 Illustrative Results (221)
      • 9.5.1 Source Separation and Equalization in Digital Communications (221)
      • 9.5.2 Artifact Rejection in Biomedical Recordings (222)
    • 9.6 Conclusions (224)
    • References (225)
  • Chapter 10: Swarm Intelligence Techniques Applied to Nonlinear Systems State Estimation (230)
    • 10.1 Introduction (230)
    • 10.2 Estimation Problem Formulation (232)
    • 10.3 Generic Particle Filter and Limitations (233)
      • 10.3.1 Initialization (234)
      • 10.3.2 Propagation of Particles' Location (234)
      • 10.3.3 Weight Computation and Normalization (235)
      • 10.3.4 Resampling (235)
      • 10.3.5 State Estimation (236)
      • 10.3.6 Limitations (237)
        • 10.3.6.1 Particle Impoverishment (237)
        • 10.3.6.2 Sample Size Dependency (238)
    • 10.4 Swarm Filters (238)
      • 10.4.1 Particle Swarm Optimized Particle Filter (PSOPF) (239)
        • 10.4.1.1 Computation of Cost Function (239)
        • 10.4.1.2 Local Best and Global Best Update (239)
        • 10.4.1.3 Velocity and Position Update Rules (241)
        • 10.4.1.4 Weight Computation and Normalization (241)
        • 10.4.1.5 Stopping Condition (241)
      • 10.4.2 Ant Colony Optimization Assisted Particle Filter (PFACO) (242)
        • 10.4.2.1 Computation of Probability Function (242)
        • 10.4.2.2 Movement of the Ants (243)
        • 10.4.2.3 Update Pheromone Distribution (244)
        • 10.4.2.4 Stopping Condition (244)
      • 10.4.3 Particle Filter with Ant Colony for Continuous Domains (244)
        • 10.4.3.1 Initialization (245)
        • 10.4.3.2 Computation of Cost Function (246)
        • 10.4.3.3 External Archive Update (246)
        • 10.4.3.4 Pheromone Update (246)
        • 10.4.3.5 Movement of the Ants (247)
        • 10.4.3.6 Computation of Weights (247)
        • 10.4.3.7 State Estimation (247)
      • 10.4.4 Continuous Ant Colony Filter (CACF) (248)
        • 10.4.4.1 Initialization (249)
        • 10.4.4.2 Computation of Cost Function (249)
        • 10.4.4.3 Updating Pheromone Distribution (249)
        • 10.4.4.4 Movement of Ants (250)
        • 10.4.4.5 State Estimation (250)
    • 10.5 Conclusion (250)
    • References (251)
  • Chapter 11: Heuristic Optimal Design of Multiplier-less Digital Filter (253)
    • 11.1 Introduction (253)
    • 11.2 The Accumulated Hybrid Code (AHC) (255)
      • 11.2.1 The Traditional Hybrid Code Method (255)
      • 11.2.2 New Hybrid Code Method (256)
    • 11.3 CSD-Based Genetic Algorithm (257)
      • 11.3.1 Definition of the Fitness Function (257)
      • 11.3.2 CSD-Based Crossover (257)
      • 11.3.3 CSD-Based Mutation (258)
    • 11.4 CSD-Based Design of FIR Filter (259)
      • 11.4.1 Overview of Finite-Impulse Response (FIR) Filter (259)
      • 11.4.2 Estimation of the Order (260)
      • 11.4.3 Design Example of an FIR Filter [4] (261)
    • 11.5 CSD-Based Design of IIR Filter (264)
      • 11.5.1 Overview of Infinite Impulse Response (IIR) Filters (265)
      • 11.5.2 Stability Criterion for an IIR Filter (266)
      • 11.5.3 Design of an IIR Filter (267)
      • 11.5.4 Design Example of an IIR Filter [5] (267)
    • References (270)
  • Chapter 12: Hybrid Correlation-Neural Network Synergy for Gait Signal Classification (272)
    • 12.1 Introduction (273)
    • 12.2 The Acquisition of Gait Signals (274)
    • 12.3 Cross-Correlation Based Feature Extraction Methodology (277)
      • 12.3.1 Time Domain Features (278)
      • 12.3.2 Frequency Domain Features (279)
    • 12.4 Elman's Recurrent Neural Network Based Classification (279)
    • 12.5 Time Domain Cross-Correlation Based Scheme for Gait Signal Classification (282)
      • 12.5.1 Performance Evaluation (285)
    • 12.6 Frequency Domain Cross-Correlation Based Scheme for Gait Signal Classification (289)
      • 12.6.1 Performance Evaluation (290)
    • 12.7 Conclusions (291)
    • References (292)
  • Chapter 13: Image Denoising Using Wavelets: Application in Medical Imaging (295)
    • 13.1 Introduction to Multiresolution Analysis (295)
      • 13.1.1 Discovery and Contributions of Wavelets (296)
      • 13.1.2 Continuous Wavelet Transforms (296)
      • 13.1.3 Discrete Wavelet Transforms (298)
      • 13.1.4 The Concept of MRA (299)
      • 13.1.5 Implementation of MRA: Mallat Algorithm (300)
    • 13.2 Redundant Multiresolution Analysis (301)
      • 13.2.1 Undecimated Discrete Wavelet Transform (302)
      • 13.2.2 Wavelet Packets (302)
      • 13.2.3 Contourlet Transform (303)
    • 13.3 Denoising or Noise Reduction (304)
      • 13.3.1 Additive Gaussian White Noise Model (305)
      • 13.3.2 Sigmoidal Wavelet Shrinkage (308)
      • 13.3.3 Parametric Denoising: Wiener Filtering (310)
      • 13.3.4 Suppression of Correlated Noise (311)
    • 13.4 Applications in Medical Imaging (312)
      • 13.4.1 Medical Imaging Methods and Techniques (313)
      • 13.4.2 Wavelet-Based Denoising in fMRI, MRI, and Echography (316)
        • 13.4.2.1 MRI Illustration (316)
        • 13.4.2.2 Echography Illustration (319)
    • 13.5 Conclusion (320)
    • References (320)
  • Chapter 14: Signal Separation with A Priori Knowledge Using Sparse Representation (322)
    • 14.1 Introduction (322)
    • 14.2 Signal Separation Using Sparse Representation (323)
      • 14.2.1 Dictionary Construction (324)
      • 14.2.2 Pursuit Algorithms (325)
        • 14.2.2.1 Greedy Algorithms (325)
        • 14.2.2.2 Algorithms Based on Norm Minimization (327)
    • 14.3 MRS Spectra Separation with A Priori Knowledge Using Sparse Representation (328)
      • 14.3.1 Signal Models (329)
      • 14.3.2 Dictionary Construction Based on the A Priori Knowledge (330)
      • 14.3.3 Resonance Estimation with FOCUSS Algorithm (332)
      • 14.3.4 Experiments and Results (333)
        • 14.3.4.1 Simulated Experiments (333)
        • 14.3.4.2 Quantitation of Human Brain 1H MRS Data (336)
        • 14.3.4.3 Quantitation of Prostate 1H MRS Data (336)
    • 14.4 Summary (337)
    • References (338)
  • Chapter 15: Definition of a Discrete Color Monogenic Wavelet Transform (340)
    • 15.1 Introduction (340)
      • Notations (341)
    • 15.2 Analytical Signal and 2D Generalization (342)
      • 15.2.1 Analytic Signal (1D) (342)
      • 15.2.2 Monogenic Signal (2D) (342)
      • 15.2.3 Monogenic Multiresolution (343)
        • 15.2.3.1 Primary Transform (344)
        • 15.2.3.2 The Monogenic Transform (344)
    • 15.3 First Extension of Color Monogenic Wavelet (345)
      • 15.3.1 The Color Monogenic Signal (345)
      • 15.3.2 The Color Monogenic Wavelet Transform (345)
    • 15.4 Second Approach for Color Monogenic Signal: A Tensor Approach (348)
      • 15.4.1 Link Between Riesz and Gradient (348)
      • 15.4.2 Color Riesz Analysis (349)
      • 15.4.3 Tensor Based Color Monogenic Wavelet Transform (351)
      • 15.4.4 Algorithm Discussion (352)
    • 15.5 The Radon Domain for Numerical Monogenic Transform (353)
      • 15.5.1 The Radon Transform (353)
      • 15.5.2 Discrete Radon (354)
      • 15.5.3 Discrete Radon Based Riesz Transform (356)
      • 15.5.4 Discrete Radon Based Monogenic Wavelet Transform (357)
    • 15.6 Conclusion (359)
    • References (361)
  • Chapter 16: On Image Matching and Feature Tracking for Embedded Systems: A State-of-the-Art (363)
    • 16.1 Introduction (364)
    • 16.2 Matching: Concepts, Algorithms, and Architectures (365)
      • 16.2.1 Matching: Basic Concepts (365)
      • 16.2.2 Characteristics for Matching (365)
      • 16.2.3 Popular Matching Methods (367)
        • 16.2.3.1 Raw Data/Area Based Methods (367)
        • 16.2.3.2 Feature Based Approaches (369)
      • 16.2.4 Hardware Systems for Image Matching (373)
    • 16.3 Feature Tracking (375)
      • 16.3.1 Correlation-Based Feature Tracking (376)
      • 16.3.2 Bayesian Approaches (380)
    • 16.4 Final Comments and Potential Future Developments (381)
    • References (382)
  • Index (387)
Loading...