Loading...

Optimising operational cost of a smart energy hub, the reinforcement learning approach

Rayati, M ; Sharif University of Technology

627 Viewed
  1. Type of Document: Article
  2. DOI: 10.1080/17445760.2014.974600
  3. Abstract:
  4. The concept of smart grid (SG) has been introduced to improve the operation of the power systems. In modern structures of power systems, different reasons prompt researchers to suggest integrated analysis of multi-carrier energy systems. Considering synergy effects of the couplings between different energy carriers and utilising intelligent technologies for monitoring and controlling of energy flow may change energy system management in the future. In this paper, we propose a new solution which is entitled ‘smart energy hub’ (SEH) that models a multi-carrier energy system in a SG. SEH solutions allow homeowners to manage their energy consumption to reduce their electricity and gas bill. We present this concept for a residential customer by an ‘energy management system’ which uses reinforcement learning algorithm and Monte Carlo estimation method for finding a near optimal solution. The simulation results show that by using this concept and then applying the algorithm for a residential customer, running costs are reduced up to 40% while keeping the household owner's desired comfort levels
  5. Keywords:
  6. Energy management system ; Optimisation ; Reinforcement learning ; Smart energy hub ; Smart grids ; Reinforcement learning ; Optimisations ; Reinforcement learning approach ; Smart energies ; Smart grid ; Energy management systems
  7. Source: International Journal of Parallel, Emergent and Distributed Systems ; 2014 ; ISSN: 17445760
  8. URL: http://www.tandfonline.com/doi/abs/10.1080/17445760.2014.974600?journalCode=gpaa20#.VdqpYH2D4_4