Loading...
- Type of Document: M.Sc. Thesis
- Language: Farsi
- Document No: 53212 (08)
- University: Sharif University of Technology
- Department: Mechanical Engineering
- Advisor(s): Meghdari, Ali; Taheri, Alireza; Alemi, Minoo
- Abstract:
- Using social robots as Iranian sign language teaching assistants can be an important step in expanding communication with the deaf in the future. In the literature, it has been shown that user interfaces with adaptive behavior lead to more technological acceptance by the user and increase educational productivity compared to non-adaptive ones. This project aims to empower the RASA robot to perform adaptive Iranian sign language teaching to users, meaning that four of the robot’s outputs will be adaptive to the user: the word to teach, the performance speed, number of repeats, and the robot’s emotional reaction. The first important innovation of this research is the use of a Deep Neural Network (DNN) and the "state-image" method for preprocessing data to use in the sign language recognition module. Another important innovation is the adaptation of the robot’s teaching program to each person as well as the general teaching logic at the same time. In the first phase, Iranian sign language words were collected using a data collection glove, in which each dynamic gesture was converted into a single image by the "state-image" method. Then, using a genetic algorithm, an optimal structure for the deep neural network was obtained, to which the images were fed, and thus the neural network was able to predict gesture patterns. In the second phase, in the ROS environment using Python language, an adaptive teaching architecture was implemented on the RASA robot, which uses fuzzy logic to make the teaching process unique to each person and each session based on users’ performance background. Finally, in the third phase, the teaching performance of the robot was assessed through the statistical analysis of the T-test and Cohen’s d size-effect on the data collected during the teaching sessions and the standard UTAUT questionnaire. The results of the sign recognition system showed that the adopted mechanism can correctly recognize 15 sign language signs with 99.7% accuracy. Statistical results also showed that the adaptation of robot’s teaching was not only well felt by users but also had a significant effect on improving user performance and their attitudes toward human-robot interaction in four items of the standard questionnaire
- Keywords:
- Deep Neural Networks ; Pattern Recognition ; Social Robotics ; Fuzzy Logic ; Genetic Algorithm ; Persian Sign Language ; Social Robotics
- محتواي کتاب
- view
- تقدیمنامه
- تشکر و قدردانی
- 1. مقدمه و معرفی پژوهش
- 2. پیشینه و تحقیقات مشابه
- 3. مفاهیم، تکنیکها و تجهیزات به کار رفته در پژوهش
- 4. فاز اول: پیاده سازی سامانهی تشخیص علائم زبان اشارهی ایرانی
- 5. فاز دوم: پیادهسازی معماری آموزش تطبیقی
- 5.1 مقدمه
- 5.2 ساخت معماری سازگارپذیری
- 5.2.1 معماری کلی
- 5.2.2 ماژول اسکنر کاربر
- 5.2.3 ماژول گزینگر کلمه
- 5.2.4 ماژولهای تحلیلگر
- 5.2.5 ماژول تولید خروجی ربات
- 5.2.6 ماژول منتشرکننده
- 5.2.7 ماژول شروع آزمون
- 5.2.8 ماژول ضبط داده
- 5.2.9 ماژول تشخیص علامت
- 5.2.10 حلقهی داخلی آموزش
- 5.2.11 ماژولهای بهروزرسان
- 5.2.12 ماژول اختتام آموزش
- 5.3 پیادهسازی اجرای کلمات توسط ربات رسا
- 5.4 جمعبندی
- 6. فاز سوم: ارزیابی معماری پیادهسازیشده در قالب تعامل انسان-ربات
- 6.1 مقدمه
- 6.2 طراحی سناریوی آزمایشی
- 6.3 نتایج
- 6.3.1 کیفیت آموزش بر حسب دادههای آموزشی
- 6.3.2 اضطراب
- 6.3.3 نگرش نسبت به تکنولوژی
- 6.3.4 شرایط آسانسازی
- 6.3.5 انگیزهی استفاده از سیستم
- 6.3.6 تطابق درکشده از سوی کاربر
- 6.3.7 رضایتمندی درکشده از سوی کاربر
- 6.3.8 راحتی درکشده از سوی کاربر
- 6.3.9 اجتماعیبودن درکشده از سوی کاربر
- 6.3.10 مفیدبودن درکشده از سوی کاربر
- 6.3.11 تاثیرگذاری اجتماعی
- 6.3.12 موجودیت اجتماعی
- 6.3.13 اعتماد
- 6.4 جمعبندی
- 7. جمعبندی کلی پژوهش
- 8. محدودیتها و پیشنهاد پژوهشهای آتی
- 9. منابع
- 10. پیوست