Loading...

Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in–tube microextraction of volatile organic compounds in saliva

Enteshari Najafabadi, M ; Sharif University of Technology | 2020

869 Viewed
  1. Type of Document: Article
  2. DOI: 10.1016/j.jpba.2020.113599
  3. Publisher: Elsevier B.V , 2020
  4. Abstract:
  5. A gradient derived base layer extractive phase was synthesized and applied for the determination of volatile organic compounds (VOCs) in saliva samples using the headspace cooled in–tube microextraction (HS–CITME) method. The base layers from three different sols of phenyltriethoxysilane (PTES), octyltrimethoxysilane (OTMS) and methyltrimethoxysilane (MTMS) as nonpolar precursors were individually dip coated on the stainless steel wires (SSW). Then, the hydrolyzed polar precursor aminopropyltriethoxysilane (APTES) reacted with the silanol groups already formed on the surface of SSWs via controlled rate infusion (CRI) method. The presence of polar and non–polar functional groups on the surface of substrate was evaluated by Fourier–transform infrared spectroscopy (FTIR) while the morphology and thickness of the most suitable gradient coating (amine/phenyl) were also investigated by scanning electron microscopy (SEM). Assessment of the gradient extractive phase efficiency was carried out determining a group of VOCs with different polarities coupled with gas chromatography–mass spectrometry (GC[sbnd]MS) and the improved performance of the synthesized base layer coatings was observed. Furthermore, a cooling device was designed and implemented to the extracting system to improve the efficiency by influencing the exothermic nature of process. The data were analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) and the results were interpreted by polarities of analytes. Finally, under the optimized conditions, the limits of detection (LOD) and limits of quantification (LOQ) were 0.15 and 0.50 ng L−1, respectively. The intra–day and inter–day relative standard deviations (RSDs) at 5 and 50 ng L−1 (n = 3) using a single extractive phase were 2–6 and 10–17, respectively. The data associated with RSDs% for three extractive phases were between 16 and 19 %. Eventually, the method was conveniently applied to the extraction of VOCs from saliva samples of smokers and satisfactory relative recoveries (RR%) (95–108 %) were achieved and low quantities of VOCs were detected. © 2020 Elsevier B.V
  6. Keywords:
  7. Base layer ; Gradient extractive phase ; Headspace cooled in–tube microextraction ; Saliva samples ; Volatile organic compounds ; Amine ; Base ; Octyltrimethoxysilane ; Phenyl group ; Phenyltriethoxysilane ; Silane derivative ; Silanol ; Trimethoxymethylsilane ; Unclassified drug ; Volatile organic compound ; Adult ; Article ; Cluster analysis ; Coating (procedure) ; Controlled study ; Female ; Fourier transform infrared spectroscopy ; Headspace extraction ; Hierarchical clustering ; Human ; Limit of detection ; Limit of quantitation ; Male ; Mass fragmentography ; Middle aged ; Morphology ; Principal component analysis ; Priority journal ; Saliva ; Scanning electron microscopy ; Smoking ; Surface property ; Thickness
  8. Source: Journal of Pharmaceutical and Biomedical Analysis ; Volume 191 , 2020
  9. URL: https://www.sciencedirect.com/science/article/abs/pii/S0731708520314850