Loading...
Stability analysis of generally laminated conical shells with variable thickness under axial compression
Kazemi, M. E ; Sharif University of Technology | 2020
571
Viewed
- Type of Document: Article
- DOI: 10.1080/15376494.2018.1511016
- Publisher: Taylor and Francis Inc , 2020
- Abstract:
- The buckling of generally laminated conical shells having thickness variations under axial compression is investigated. This problem usually arises in the filament wound conical shells where the thickness changes through the length of the cone. The thickness may be assumed to change linearly through the length of the cone. The fundamental relations for a conical shell with variable thickness applying thin-walled shallow shell theory of Donnell-type and theorem of minimum potential energy have been derived. Nonlinear terms of Donnell equations are linearized by the use of adjacent-equilibrium criterion. Governing equations are solved using power series method. This procedure enables us to investigate all combinations of classical boundary conditions. The results are verified in comparison with Galerkin method and the available results in the literature. Effects of thickness function coefficient, semi-vertex angle, lamination sequence, length to diameter ratio, and initial thickness of the cone on the buckling load are investigated. It is observed that these parameters have considerable effects on the critical buckling load of a conical shell. © 2018 Taylor & Francis Group, LLC
- Keywords:
- Conical shells ; Generally laminated ; Axial compression ; Buckling ; Galerkin methods ; Laminating ; Nonlinear equations ; Potential energy ; Thickness control ; Thin walled structures ; Conical shell ; Critical buckling loads ; Laminated conical shells ; Length to diameter ratio ; Minimum potential energy ; Power series ; Variable thickness ; Shells (structures)
- Source: Mechanics of Advanced Materials and Structures ; Volume 27, Issue 16 , 2020 , Pages 1373-1386
- URL: https://www.tandfonline.com/doi/abs/10.1080/15376494.2018.1511016?journalCode=umcm20