Sharif Digital Repository / Sharif University of Technology
    • [Zoom In]
    • [Zoom Out]
  • Page 
     of  0
  • [Previous Page]
  • [Next Page]
  • [Fullscreen view]
  • [Close]
 
Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method
Hosseinzadeh, S

Cataloging brief

Analytical solution of nonlinear differential equations two oscillators mechanism using Akbari-Ganji method
Author :   Hosseinzadeh, S
Publisher :   World Scientific
Pub. Year  :   2021
Subjects :   Akbari–Ganji method Sensitivity analysis Nonlinear equations Oscillator
Call Number :  

Find in content

sort by

Bookmark

  • Foreword (6)
  • Preface (10)
    • Genesis (10)
    • Purpose (11)
    • Limitations/Prerequisites (11)
    • Scope of the Book (12)
    • Acknowledgements (13)
  • DSPA Application and Use Disclaimer (14)
    • Biomedical, Biosocial, Environmental, and Health Disclaimer (15)
  • Notations (16)
  • Contents (17)
  • Chapter 1: Motivation (33)
    • 1.1 DSPA Mission and Objectives (33)
    • 1.2 Examples of Driving Motivational Problems and Challenges (34)
      • 1.2.1 Alzheimer´s Disease (34)
      • 1.2.2 Parkinson´s Disease (34)
      • 1.2.3 Drug and Substance Use (35)
      • 1.2.4 Amyotrophic Lateral Sclerosis (36)
      • 1.2.5 Normal Brain Visualization (36)
      • 1.2.6 Neurodegeneration (36)
      • 1.2.7 Genetic Forensics: 2013-2016 Ebola Outbreak (37)
      • 1.2.8 Next Generation Sequence (NGS) Analysis (38)
      • 1.2.9 Neuroimaging-Genetics (39)
    • 1.3 Common Characteristics of Big (Biomedical and Health) Data (40)
    • 1.4 Data Science (41)
    • 1.5 Predictive Analytics (41)
    • 1.6 High-Throughput Big Data Analytics (42)
    • 1.7 Examples of Data Repositories, Archives, and Services (42)
    • 1.8 DSPA Expectations (43)
  • Chapter 2: Foundations of R (45)
    • 2.1 Why Use R? (45)
    • 2.2 Getting Started (47)
      • 2.2.1 Install Basic Shell-Based R (47)
      • 2.2.2 GUI Based R Invocation (RStudio) (47)
      • 2.2.3 RStudio GUI Layout (47)
      • 2.2.4 Some Notes (48)
    • 2.3 Help (48)
    • 2.4 Simple Wide-to-Long Data format Translation (49)
    • 2.5 Data Generation (50)
    • 2.6 Input/Output (I/O) (54)
    • 2.7 Slicing and Extracting Data (56)
    • 2.8 Variable Conversion (57)
    • 2.9 Variable Information (57)
    • 2.10 Data Selection and Manipulation (59)
    • 2.11 Math Functions (62)
    • 2.12 Matrix Operations (64)
    • 2.13 Advanced Data Processing (64)
    • 2.14 Strings (69)
    • 2.15 Plotting (71)
    • 2.16 QQ Normal Probability Plot (73)
    • 2.17 Low-Level Plotting Commands (77)
    • 2.18 Graphics Parameters (77)
    • 2.19 Optimization and model Fitting (79)
    • 2.20 Statistics (80)
    • 2.21 Distributions (81)
      • 2.21.1 Programming (81)
    • 2.22 Data Simulation Primer (82)
    • 2.23 Appendix (88)
      • 2.23.1 HTML SOCR Data Import (88)
      • 2.23.2 R Debugging (89)
        • Example (92)
    • 2.24 Assignments: 2. R Foundations (92)
      • 2.24.1 Confirm that You Have Installed R/RStudio (92)
      • 2.24.2 Long-to-Wide Data Format Translation (93)
      • 2.24.3 Data Frames (93)
      • 2.24.4 Data Stratification (93)
      • 2.24.5 Simulation (93)
      • 2.24.6 Programming (94)
    • References (94)
  • Chapter 3: Managing Data in R (95)
    • 3.1 Saving and Loading R Data Structures (95)
    • 3.2 Importing and Saving Data from CSV Files (96)
    • 3.3 Exploring the Structure of Data (98)
    • 3.4 Exploring Numeric Variables (98)
    • 3.5 Measuring the Central Tendency: Mean, Median, Mode (99)
    • 3.6 Measuring Spread: Quartiles and the Five-Number Summary (100)
    • 3.7 Visualizing Numeric Variables: Boxplots (102)
    • 3.8 Visualizing Numeric Variables: Histograms (103)
    • 3.9 Understanding Numeric Data: Uniform and Normal Distributions (104)
    • 3.10 Measuring Spread: Variance and Standard Deviation (105)
    • 3.11 Exploring Categorical Variables (108)
    • 3.12 Exploring Relationships Between Variables (109)
    • 3.13 Missing Data (111)
      • 3.13.1 Simulate Some Real Multivariate Data (116)
      • 3.13.2 TBI Data Example (130)
      • 3.13.3 Imputation via Expectation-Maximization (154)
        • Types of Missing Data (154)
        • General Idea of EM Algorithm (154)
        • EM-Based Imputation (155)
        • A Simple Manual Implementation of EM-Based Imputation (156)
        • Plotting Complete and Imputed Data (159)
        • Validation of EM-Imputation Using the Amelia R Package (160)
          • Comparison (160)
          • Density Plots (162)
    • 3.14 Parsing Webpages and Visualizing Tabular HTML Data (162)
    • 3.15 Cohort-Rebalancing (for Imbalanced Groups) (167)
    • 3.16 Appendix (170)
      • 3.16.1 Importing Data from SQL Databases (170)
      • 3.16.2 R Code Fragments (171)
    • 3.17 Assignments: 3. Managing Data in R (172)
      • 3.17.1 Import, Plot, Summarize and Save Data (172)
      • 3.17.2 Explore some Bivariate Relations in the Data (172)
      • 3.17.3 Missing Data (173)
      • 3.17.4 Surface Plots (173)
      • 3.17.5 Unbalanced Designs (173)
      • 3.17.6 Aggregate Analysis (173)
    • References (173)
  • Chapter 4: Data Visualization (174)
    • 4.1 Common Questions (174)
    • 4.2 Classification of Visualization Methods (175)
    • 4.3 Composition (175)
      • 4.3.1 Histograms and Density Plots (175)
      • 4.3.2 Pie Chart (178)
      • 4.3.3 Heat Map (180)
    • 4.4 Comparison (183)
      • 4.4.1 Paired Scatter Plots (183)
      • 4.4.2 Jitter Plot (188)
      • 4.4.3 Bar Plots (190)
      • 4.4.4 Trees and Graphs (195)
      • 4.4.5 Correlation Plots (198)
    • 4.5 Relationships (202)
      • 4.5.1 Line Plots Using ggplot (202)
      • 4.5.2 Density Plots (204)
      • 4.5.3 Distributions (204)
      • 4.5.4 2D Kernel Density and 3D Surface Plots (205)
      • 4.5.5 Multiple 2D Image Surface Plots (207)
      • 4.5.6 3D and 4D Visualizations (209)
    • 4.6 Appendix (214)
      • 4.6.1 Hands-on Activity (Health Behavior Risks) (214)
      • 4.6.2 Additional ggplot Examples (218)
        • Housing Price Data (218)
        • Modeling the Home Price Index Data (Fig. 4.48) (220)
        • Map of the Neighborhoods of Los Angeles (LA) (222)
        • Latin Letter Frequency in Different Languages (224)
    • 4.7 Assignments 4: Data Visualization (229)
      • 4.7.1 Common Plots (229)
      • 4.7.2 Trees and Graphs (229)
      • 4.7.3 Exploratory Data Analytics (EDA) (230)
    • References (230)
  • Chapter 5: Linear Algebra and Matrix Computing (231)
    • 5.1 Matrices (Second Order Tensors) (232)
      • 5.1.1 Create Matrices (232)
      • 5.1.2 Adding Columns and Rows (233)
    • 5.2 Matrix Subscripts (234)
    • 5.3 Matrix Operations (234)
      • 5.3.1 Addition (234)
      • 5.3.2 Subtraction (235)
      • 5.3.3 Multiplication (235)
        • Elementwise Multiplication (235)
        • Matrix Multiplication (235)
      • 5.3.4 Element-wise Division (237)
      • 5.3.5 Transpose (237)
      • 5.3.6 Multiplicative Inverse (237)
    • 5.4 Matrix Algebra Notation (239)
      • 5.4.1 Linear Models (239)
      • 5.4.2 Solving Systems of Equations (240)
      • 5.4.3 The Identity Matrix (242)
    • 5.5 Scalars, Vectors and Matrices (243)
      • 5.5.1 Sample Statistics (Mean, Variance) (245)
        • Mean (245)
        • Variance (246)
        • Applications of Matrix Algebra: Linear Modeling (246)
        • Finding Function Extrema (Min/Max) Using Calculus (247)
      • 5.5.2 Least Square Estimation (248)
        • The R lm Function (249)
    • 5.6 Eigenvalues and Eigenvectors (249)
    • 5.7 Other Important Functions (250)
    • 5.8 Matrix Notation (Another View) (250)
    • 5.9 Multivariate Linear Regression (254)
    • 5.10 Sample Covariance Matrix (257)
    • 5.11 Assignments: 5. Linear Algebra and Matrix Computing (259)
      • 5.11.1 How Is Matrix Multiplication Defined? (259)
      • 5.11.2 Scalar Versus Matrix Multiplication (259)
      • 5.11.3 Matrix Equations (259)
      • 5.11.4 Least Square Estimation (260)
      • 5.11.5 Matrix Manipulation (260)
      • 5.11.6 Matrix Transpose (260)
      • 5.11.7 Sample Statistics (260)
      • 5.11.8 Least Square Estimation (260)
      • 5.11.9 Eigenvalues and Eigenvectors (261)
    • References (261)
  • Chapter 6: Dimensionality Reduction (262)
    • 6.1 Example: Reducing 2D to 1D (262)
    • 6.2 Matrix Rotations (266)
    • 6.3 Notation (271)
    • 6.4 Summary (PCA vs. ICA vs. FA) (271)
    • 6.5 Principal Component Analysis (PCA) (272)
      • 6.5.1 Principal Components (272)
    • 6.6 Independent Component Analysis (ICA) (279)
    • 6.7 Factor Analysis (FA) (283)
    • 6.8 Singular Value Decomposition (SVD) (285)
    • 6.9 SVD Summary (287)
    • 6.10 Case Study for Dimension Reduction (Parkinson´s Disease) (287)
    • 6.11 Assignments: 6. Dimensionality Reduction (294)
      • 6.11.1 Parkinson´s Disease Example (294)
      • 6.11.2 Allometric Relations in Plants Example (295)
        • Load Data (295)
        • Dimensionality Reduction (295)
    • References (295)
  • Chapter 7: Lazy Learning: Classification Using Nearest Neighbors (296)
    • 7.1 Motivation (297)
    • 7.2 The kNN Algorithm Overview (298)
      • 7.2.1 Distance Function and Dummy Coding (298)
      • 7.2.2 Ways to Determine k (299)
      • 7.2.3 Rescaling of the Features (299)
      • 7.2.4 Rescaling Formulas (300)
    • 7.3 Case Study (300)
      • 7.3.1 Step 1: Collecting Data (300)
      • 7.3.2 Step 2: Exploring and Preparing the Data (301)
      • 7.3.3 Normalizing Data (302)
      • 7.3.4 Data Preparation: Creating Training and Testing Datasets (303)
      • 7.3.5 Step 3: Training a Model On the Data (303)
      • 7.3.6 Step 4: Evaluating Model Performance (303)
      • 7.3.7 Step 5: Improving Model Performance (304)
      • 7.3.8 Testing Alternative Values of k (305)
      • 7.3.9 Quantitative Assessment (Tables 7.2 and 7.3) (311)
    • 7.4 Assignments: 7. Lazy Learning: Classification Using Nearest Neighbors (315)
      • 7.4.1 Traumatic Brain Injury (TBI) (315)
      • 7.4.2 Parkinson´s Disease (315)
      • 7.4.3 KNN Classification in a High Dimensional Space (316)
      • 7.4.4 KNN Classification in a Lower Dimensional Space (316)
    • References (316)
  • Chapter 8: Probabilistic Learning: Classification Using Naive Bayes (317)
    • 8.1 Overview of the Naive Bayes Algorithm (317)
    • 8.2 Assumptions (318)
    • 8.3 Bayes Formula (318)
    • 8.4 The Laplace Estimator (320)
    • 8.5 Case Study: Head and Neck Cancer Medication (321)
      • 8.5.1 Step 1: Collecting Data (321)
      • 8.5.2 Step 2: Exploring and Preparing the Data (321)
        • Data Preparation: Processing Text Data for Analysis (322)
        • Data Preparation: Creating Training and Test Datasets (323)
        • Visualizing Text Data: Word Clouds (325)
        • Data Preparation: Creating Indicator Features for Frequent Words (326)
      • 8.5.3 Step 3: Training a Model on the Data (327)
      • 8.5.4 Step 4: Evaluating Model Performance (328)
      • 8.5.5 Step 5: Improving Model Performance (329)
      • 8.5.6 Step 6: Compare Naive Bayesian against LDA (330)
    • 8.6 Practice Problem (331)
    • 8.7 Assignments 8: Probabilistic Learning: Classification Using Naive Bayes (332)
      • 8.7.1 Explain These Two Concepts (332)
      • 8.7.2 Analyzing Textual Data (333)
    • References (333)
  • Chapter 9: Decision Tree Divide and Conquer Classification (334)
    • 9.1 Motivation (334)
    • 9.2 Hands-on Example: Iris Data (335)
    • 9.3 Decision Tree Overview (337)
      • 9.3.1 Divide and Conquer (338)
      • 9.3.2 Entropy (339)
      • 9.3.3 Misclassification Error and Gini Index (340)
      • 9.3.4 C5.0 Decision Tree Algorithm (340)
      • 9.3.5 Pruning the Decision Tree (342)
    • 9.4 Case Study 1: Quality of Life and Chronic Disease (343)
      • 9.4.1 Step 1: Collecting Data (343)
      • 9.4.2 Step 2: Exploring and Preparing the Data (343)
        • Data Preparation: Creating Random Training and Test Datasets (345)
      • 9.4.3 Step 3: Training a Model On the Data (346)
      • 9.4.4 Step 4: Evaluating Model Performance (349)
      • 9.4.5 Step 5: Trial Option (350)
      • 9.4.6 Loading the Misclassification Error Matrix (351)
      • 9.4.7 Parameter Tuning (352)
    • 9.5 Compare Different Impurity Indices (358)
    • 9.6 Classification Rules (358)
      • 9.6.1 Separate and Conquer (358)
      • 9.6.2 The One Rule Algorithm (359)
      • 9.6.3 The RIPPER Algorithm (359)
    • 9.7 Case Study 2: QoL in Chronic Disease (Take 2) (359)
      • 9.7.1 Step 3: Training a Model on the Data (359)
      • 9.7.2 Step 4: Evaluating Model Performance (360)
      • 9.7.3 Step 5: Alternative Model1 (361)
      • 9.7.4 Step 5: Alternative Model2 (361)
    • 9.8 Practice Problem (364)
    • 9.9 Assignments 9: Decision Tree Divide and Conquer Classification (369)
      • 9.9.1 Explain These Concepts (369)
      • 9.9.2 Decision Tree Partitioning (369)
    • References (370)
  • Chapter 10: Forecasting Numeric Data Using Regression Models (371)
    • 10.1 Understanding Regression (371)
      • 10.1.1 Simple Linear Regression (371)
    • 10.2 Ordinary Least Squares Estimation (373)
      • 10.2.1 Model Assumptions (375)
      • 10.2.2 Correlations (375)
      • 10.2.3 Multiple Linear Regression (376)
    • 10.3 Case Study 1: Baseball Players (378)
      • 10.3.1 Step 1: Collecting Data (378)
      • 10.3.2 Step 2: Exploring and Preparing the Data (378)
      • 10.3.3 Exploring Relationships Among Features: The Correlation Matrix (382)
      • 10.3.4 Visualizing Relationships Among Features: The Scatterplot Matrix (382)
      • 10.3.5 Step 3: Training a Model on the Data (384)
      • 10.3.6 Step 4: Evaluating Model Performance (385)
    • 10.4 Step 5: Improving Model Performance (387)
      • 10.4.1 Model Specification: Adding Non-linear Relationships (395)
      • 10.4.2 Transformation: Converting a Numeric Variable to a Binary Indicator (396)
      • 10.4.3 Model Specification: Adding Interaction Effects (397)
    • 10.5 Understanding Regression Trees and Model Trees (399)
      • 10.5.1 Adding Regression to Trees (399)
    • 10.6 Case Study 2: Baseball Players (Take 2) (400)
      • 10.6.1 Step 2: Exploring and Preparing the Data (400)
      • 10.6.2 Step 3: Training a Model On the Data (401)
      • 10.6.3 Visualizing Decision Trees (401)
      • 10.6.4 Step 4: Evaluating Model Performance (403)
      • 10.6.5 Measuring Performance with Mean Absolute Error (404)
      • 10.6.6 Step 5: Improving Model Performance (404)
    • 10.7 Practice Problem: Heart Attack Data (406)
    • 10.8 Assignments: 10. Forecasting Numeric Data Using Regression Models (407)
    • References (407)
  • Chapter 11: Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines (408)
    • 11.1 Understanding Neural Networks (408)
      • 11.1.1 From Biological to Artificial Neurons (408)
      • 11.1.2 Activation Functions (409)
      • 11.1.3 Network Topology (411)
      • 11.1.4 The Direction of Information Travel (411)
      • 11.1.5 The Number of Nodes in Each Layer (411)
      • 11.1.6 Training Neural Networks with Backpropagation (412)
    • 11.2 Case Study 1: Google Trends and the Stock Market: Regression (413)
      • 11.2.1 Step 1: Collecting Data (413)
        • Variables (413)
      • 11.2.2 Step 2: Exploring and Preparing the Data (414)
      • 11.2.3 Step 3: Training a Model on the Data (416)
      • 11.2.4 Step 4: Evaluating Model Performance (417)
      • 11.2.5 Step 5: Improving Model Performance (418)
      • 11.2.6 Step 6: Adding Additional Layers (419)
    • 11.3 Simple NN Demo: Learning to Compute (419)
    • 11.4 Case Study 2: Google Trends and the Stock Market - Classification (421)
    • 11.5 Support Vector Machines (SVM) (423)
      • 11.5.1 Classification with Hyperplanes (424)
        • Finding the Maximum Margin (424)
        • Linearly Separable Data (424)
        • Non-linearly Separable Data (427)
        • Using Kernels for Non-linear Spaces (428)
    • 11.6 Case Study 3: Optical Character Recognition (OCR) (428)
      • 11.6.1 Step 1: Prepare and Explore the Data (429)
      • 11.6.2 Step 2: Training an SVM Model (430)
      • 11.6.3 Step 3: Evaluating Model Performance (431)
      • 11.6.4 Step 4: Improving Model Performance (433)
    • 11.7 Case Study 4: Iris Flowers (434)
      • 11.7.1 Step 1: Collecting Data (434)
      • 11.7.2 Step 2: Exploring and Preparing the Data (434)
      • 11.7.3 Step 3: Training a Model on the Data (436)
      • 11.7.4 Step 4: Evaluating Model Performance (437)
      • 11.7.5 Step 5: RBF Kernel Function (438)
      • 11.7.6 Parameter Tuning (438)
      • 11.7.7 Improving the Performance of Gaussian Kernels (440)
    • 11.8 Practice (441)
      • 11.8.1 Problem 1 Google Trends and the Stock Market (441)
      • 11.8.2 Problem 2: Quality of Life and Chronic Disease (441)
    • 11.9 Appendix (445)
    • 11.10 Assignments: 11. Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines (446)
      • 11.10.1 Learn and Predict a Power-Function (446)
      • 11.10.2 Pediatric Schizophrenia Study (446)
    • References (447)
  • Chapter 12: Apriori Association Rules Learning (448)
    • 12.1 Association Rules (448)
    • 12.2 The Apriori Algorithm for Association Rule Learning (449)
    • 12.3 Measuring Rule Importance by Using Support and Confidence (449)
    • 12.4 Building a Set of Rules with the Apriori Principle (450)
    • 12.5 A Toy Example (451)
    • 12.6 Case Study 1: Head and Neck Cancer Medications (452)
      • 12.6.1 Step 1: Collecting Data (452)
      • 12.6.2 Step 2: Exploring and Preparing the Data (452)
        • Visualizing Item Support: Item Frequency Plots (454)
        • Visualizing Transaction Data: Plotting the Sparse Matrix (455)
      • 12.6.3 Step 3: Training a Model on the Data (457)
      • 12.6.4 Step 4: Evaluating Model Performance (458)
      • 12.6.5 Step 5: Improving Model Performance (460)
        • Sorting the Set of Association Rules (460)
        • Taking Subsets of Association Rules (461)
        • Saving Association Rules to a File or Data Frame (463)
    • 12.7 Practice Problems: Groceries (463)
    • 12.8 Summary (466)
    • 12.9 Assignments: 12. Apriori Association Rules Learning (467)
    • References (467)
  • Chapter 13: k-Means Clustering (468)
    • 13.1 Clustering as a Machine Learning Task (468)
    • 13.2 Silhouette Plots (471)
    • 13.3 The k-Means Clustering Algorithm (472)
      • 13.3.1 Using Distance to Assign and Update Clusters (472)
      • 13.3.2 Choosing the Appropriate Number of Clusters (473)
    • 13.4 Case Study 1: Divorce and Consequences on Young Adults (473)
      • 13.4.1 Step 1: Collecting Data (473)
        • Variables (474)
      • 13.4.2 Step 2: Exploring and Preparing the Data (474)
      • 13.4.3 Step 3: Training a Model on the Data (475)
      • 13.4.4 Step 4: Evaluating Model Performance (476)
      • 13.4.5 Step 5: Usage of Cluster Information (479)
    • 13.5 Model Improvement (480)
      • 13.5.1 Tuning the Parameter k (482)
    • 13.6 Case Study 2: Pediatric Trauma (484)
      • 13.6.1 Step 1: Collecting Data (484)
      • 13.6.2 Step 2: Exploring and Preparing the Data (485)
      • 13.6.3 Step 3: Training a Model on the Data (486)
      • 13.6.4 Step 4: Evaluating Model Performance (487)
      • 13.6.5 Practice Problem: Youth Development (490)
    • 13.7 Hierarchical Clustering (492)
    • 13.8 Gaussian Mixture Models (495)
    • 13.9 Summary (497)
    • 13.10 Assignments: 13. k-Means Clustering (497)
    • References (498)
  • Chapter 14: Model Performance Assessment (499)
    • 14.1 Measuring the Performance of Classification Methods (499)
    • 14.2 Evaluation Strategies (501)
      • 14.2.1 Binary Outcomes (501)
      • 14.2.2 Confusion Matrices (502)
      • 14.2.3 Other Measures of Performance Beyond Accuracy (504)
      • 14.2.4 The Kappa (κ) Statistic (505)
        • Summary of the Kappa Score for Calculating Prediction Accuracy (508)
      • 14.2.5 Computation of Observed Accuracy and Expected Accuracy (508)
      • 14.2.6 Sensitivity and Specificity (509)
      • 14.2.7 Precision and Recall (510)
      • 14.2.8 The F-Measure (511)
    • 14.3 Visualizing Performance Tradeoffs (ROC Curve) (512)
    • 14.4 Estimating Future Performance (Internal Statistical Validation) (515)
      • 14.4.1 The Holdout Method (515)
      • 14.4.2 Cross-Validation (516)
      • 14.4.3 Bootstrap Sampling (518)
    • 14.5 Assignment: 14. Evaluation of Model Performance (519)
    • References (520)
  • Chapter 15: Improving Model Performance (521)
    • 15.1 Improving Model Performance by Parameter Tuning (521)
    • 15.2 Using caret for Automated Parameter Tuning (521)
      • 15.2.1 Customizing the Tuning Process (525)
      • 15.2.2 Improving Model Performance with Meta-learning (526)
      • 15.2.3 Bagging (527)
      • 15.2.4 Boosting (529)
      • 15.2.5 Random Forests (530)
        • Training Random Forests (530)
        • Evaluating Random Forest Performance (531)
      • 15.2.6 Adaptive Boosting (532)
    • 15.3 Assignment: 15. Improving Model Performance (534)
      • 15.3.1 Model Improvement Case Study (535)
    • References (535)
  • Chapter 16: Specialized Machine Learning Topics (536)
    • 16.1 Working with Specialized Data and Databases (536)
      • 16.1.1 Data Format Conversion (537)
      • 16.1.2 Querying Data in SQL Databases (538)
      • 16.1.3 Real Random Number Generation (544)
      • 16.1.4 Downloading the Complete Text of Web Pages (545)
      • 16.1.5 Reading and Writing XML with the XML Package (546)
      • 16.1.6 Web-Page Data Scraping (547)
      • 16.1.7 Parsing JSON from Web APIs (548)
      • 16.1.8 Reading and Writing Microsoft Excel Spreadsheets Using XLSX (549)
    • 16.2 Working with Domain-Specific Data (550)
      • 16.2.1 Working with Bioinformatics Data (550)
      • 16.2.2 Visualizing Network Data (551)
    • 16.3 Data Streaming (556)
      • 16.3.1 Definition (556)
      • 16.3.2 The stream Package (557)
      • 16.3.3 Synthetic Example: Random Gaussian Stream (557)
        • k-Means Clustering (557)
      • 16.3.4 Sources of Data Streams (559)
        • Static Structure Streams (559)
        • Concept Drift Streams (559)
        • Real Data Streams (560)
      • 16.3.5 Printing, Plotting and Saving Streams (560)
      • 16.3.6 Stream Animation (561)
      • 16.3.7 Case-Study: SOCR Knee Pain Data (563)
      • 16.3.8 Data Stream Clustering and Classification (DSC) (565)
      • 16.3.9 Evaluation of Data Stream Clustering (568)
    • 16.4 Optimization and Improving the Computational Performance (569)
      • 16.4.1 Generalizing Tabular Data Structures with dplyr (570)
      • 16.4.2 Making Data Frames Faster with Data.Table (571)
      • 16.4.3 Creating Disk-Based Data Frames with ff (571)
      • 16.4.4 Using Massive Matrices with bigmemory (572)
    • 16.5 Parallel Computing (572)
      • 16.5.1 Measuring Execution Time (573)
      • 16.5.2 Parallel Processing with Multiple Cores (573)
      • 16.5.3 Parallelization Using foreach and doParallel (575)
      • 16.5.4 GPU Computing (576)
    • 16.6 Deploying Optimized Learning Algorithms (576)
      • 16.6.1 Building Bigger Regression Models with biglm (576)
      • 16.6.2 Growing Bigger and Faster Random Forests with bigrf (576)
      • 16.6.3 Training and Evaluation Models in Parallel with caret (577)
    • 16.7 Practice Problem (577)
    • 16.8 Assignment: 16. Specialized Machine Learning Topics (578)
      • 16.8.1 Working with Website Data (578)
      • 16.8.2 Network Data and Visualization (578)
      • 16.8.3 Data Conversion and Parallel Computing (578)
    • References (579)
  • Chapter 17: Variable/Feature Selection (580)
    • 17.1 Feature Selection Methods (580)
      • 17.1.1 Filtering Techniques (580)
      • 17.1.2 Wrapper Methods (581)
      • 17.1.3 Embedded Techniques (581)
    • 17.2 Case Study: ALS (582)
      • 17.2.1 Step 1: Collecting Data (582)
      • 17.2.2 Step 2: Exploring and Preparing the Data (582)
      • 17.2.3 Step 3: Training a Model on the Data (583)
      • 17.2.4 Step 4: Evaluating Model Performance (587)
        • Comparing with RFE (587)
        • Comparing with Stepwise Feature Selection (589)
    • 17.3 Practice Problem (592)
    • 17.4 Assignment: 17. Variable/Feature Selection (594)
      • 17.4.1 Wrapper Feature Selection (594)
      • 17.4.2 Use the PPMI Dataset (594)
    • References (595)
  • Chapter 18: Regularized Linear Modeling and Controlled Variable Selection (596)
    • 18.1 Questions (597)
    • 18.2 Matrix Notation (597)
    • 18.3 Regularized Linear Modeling (597)
      • 18.3.1 Ridge Regression (599)
      • 18.3.2 Least Absolute Shrinkage and Selection Operator (LASSO) Regression (602)
      • 18.3.3 Predictor Standardization (605)
      • 18.3.4 Estimation Goals (605)
    • 18.4 Linear Regression (605)
      • 18.4.1 Drawbacks of Linear Regression (606)
      • 18.4.2 Assessing Prediction Accuracy (606)
      • 18.4.3 Estimating the Prediction Error (606)
      • 18.4.4 Improving the Prediction Accuracy (607)
      • 18.4.5 Variable Selection (608)
    • 18.5 Regularization Framework (609)
      • 18.5.1 Role of the Penalty Term (609)
      • 18.5.2 Role of the Regularization Parameter (609)
      • 18.5.3 LASSO (610)
      • 18.5.4 General Regularization Framework (610)
    • 18.6 Implementation of Regularization (611)
      • 18.6.1 Example: Neuroimaging-Genetics Study of Parkinson´s Disease Dataset (611)
      • 18.6.2 Computational Complexity (613)
      • 18.6.3 LASSO and Ridge Solution Paths (613)
      • 18.6.4 Choice of the Regularization Parameter (621)
      • 18.6.5 Cross Validation Motivation (622)
      • 18.6.6 n-Fold Cross Validation (622)
      • 18.6.7 LASSO 10-Fold Cross Validation (623)
      • 18.6.8 Stepwise OLS (Ordinary Least Squares) (624)
      • 18.6.9 Final Models (625)
      • 18.6.10 Model Performance (627)
      • 18.6.11 Comparing Selected Features (627)
      • 18.6.12 Summary (628)
    • 18.7 Knock-off Filtering: Simulated Example (628)
      • 18.7.1 Notes (630)
    • 18.8 PD Neuroimaging-Genetics Case-Study (631)
      • 18.8.1 Fetching, Cleaning and Preparing the Data (631)
      • 18.8.2 Preparing the Response Vector (632)
      • 18.8.3 False Discovery Rate (FDR) (640)
        • Graphical Interpretation of the Benjamini-Hochberg (BH) Method (641)
        • FDR Adjusting the p-Values (642)
      • 18.8.4 Running the Knockoff Filter (643)
    • 18.9 Assignment: 18. Regularized Linear Modeling and Knockoff Filtering (644)
    • References (645)
  • Chapter 19: Big Longitudinal Data Analysis (646)
    • 19.1 Time Series Analysis (646)
      • 19.1.1 Step 1: Plot Time Series (649)
      • 19.1.2 Step 2: Find Proper Parameter Values for ARIMA Model (651)
      • 19.1.3 Check the Differencing Parameter (652)
      • 19.1.4 Identifying the AR and MA Parameters (653)
      • 19.1.5 Step 3: Build an ARIMA Model (655)
      • 19.1.6 Step 4: Forecasting with ARIMA Model (660)
    • 19.2 Structural Equation Modeling (SEM)-Latent Variables (661)
      • 19.2.1 Foundations of SEM (661)
      • 19.2.2 SEM Components (664)
      • 19.2.3 Case Study - Parkinson´s Disease (PD) (665)
        • Step 1 - Collecting Data (665)
        • Step 2 - Exploring and Preparing the Data (665)
        • Step 3 - Fitting a Model on the Data (668)
      • 19.2.4 Outputs of Lavaan SEM (670)
    • 19.3 Longitudinal Data Analysis-Linear Mixed Models (671)
      • 19.3.1 Mean Trend (671)
      • 19.3.2 Modeling the Correlation (675)
    • 19.4 GLMM/GEE Longitudinal Data Analysis (676)
      • 19.4.1 GEE Versus GLMM (678)
    • 19.5 Assignment: 19. Big Longitudinal Data Analysis (680)
      • 19.5.1 Imaging Data (680)
      • 19.5.2 Time Series Analysis (681)
      • 19.5.3 Latent Variables Model (681)
    • References (681)
  • Chapter 20: Natural Language Processing/Text Mining (682)
    • 20.1 A Simple NLP/TM Example (683)
      • 20.1.1 Define and Load the Unstructured-Text Documents (684)
      • 20.1.2 Create a New VCorpus Object (686)
      • 20.1.3 To-Lower Case Transformation (687)
      • 20.1.4 Text Pre-processing (687)
        • Remove Stopwords (687)
        • Remove Punctuation (688)
        • Stemming: Removal of Plurals and Action Suffixes (688)
      • 20.1.5 Bags of Words (689)
      • 20.1.6 Document Term Matrix (690)
    • 20.2 Case-Study: Job Ranking (692)
      • 20.2.1 Step 1: Make a VCorpus Object (693)
      • 20.2.2 Step 2: Clean the VCorpus Object (693)
      • 20.2.3 Step 3: Build the Document Term Matrix (693)
      • 20.2.4 Area Under the ROC Curve (697)
    • 20.3 TF-IDF (699)
      • 20.3.1 Term Frequency (TF) (699)
      • 20.3.2 Inverse Document Frequency (IDF) (699)
      • 20.3.3 TF-IDF (700)
    • 20.4 Cosine Similarity (708)
    • 20.5 Sentiment Analysis (709)
      • 20.5.1 Data Preprocessing (709)
      • 20.5.2 NLP/TM Analytics (712)
      • 20.5.3 Prediction Optimization (715)
    • 20.6 Assignment: 20. Natural Language Processing/Text Mining (717)
      • 20.6.1 Mining Twitter Data (717)
      • 20.6.2 Mining Cancer Clinical Notes (718)
    • References (718)
  • Chapter 21: Prediction and Internal Statistical Cross Validation (719)
    • 21.1 Forecasting Types and Assessment Approaches (719)
    • 21.2 Overfitting (720)
      • 21.2.1 Example (US Presidential Elections) (720)
      • 21.2.2 Example (Google Flu Trends) (720)
      • 21.2.3 Example (Autism) (722)
    • 21.3 Internal Statistical Cross-Validation is an Iterative Process (723)
    • 21.4 Example (Linear Regression) (724)
      • 21.4.1 Cross-Validation Methods (725)
      • 21.4.2 Exhaustive Cross-Validation (725)
      • 21.4.3 Non-Exhaustive Cross-Validation (726)
    • 21.5 Case-Studies (726)
      • 21.5.1 Example 1: Prediction of Parkinson´s Disease Using Adaptive Boosting (AdaBoost) (727)
      • 21.5.2 Example 2: Sleep Dataset (730)
      • 21.5.3 Example 3: Model-Based (Linear Regression) Prediction Using the Attitude Dataset (732)
      • 21.5.4 Example 4: Parkinson´s Data (ppmi_data) (733)
    • 21.6 Summary of CV output (734)
    • 21.7 Alternative Predictor Functions (734)
      • 21.7.1 Logistic Regression (735)
      • 21.7.2 Quadratic Discriminant Analysis (QDA) (736)
      • 21.7.3 Foundation of LDA and QDA for Prediction, Dimensionality Reduction, and Forecasting (737)
        • LDA (Linear Discriminant Analysis) (738)
        • QDA (Quadratic Discriminant Analysis) (738)
      • 21.7.4 Neural Networks (739)
      • 21.7.5 SVM (740)
      • 21.7.6 k-Nearest Neighbors Algorithm (k-NN) (741)
      • 21.7.7 k-Means Clustering (k-MC) (742)
      • 21.7.8 Spectral Clustering (749)
        • Iris Petal Data (749)
        • Spirals Data (750)
        • Income Data (751)
    • 21.8 Compare the Results (752)
    • 21.9 Assignment: 21. Prediction and Internal Statistical Cross-Validation (755)
    • References (756)
  • Chapter 22: Function Optimization (757)
    • 22.1 Free (Unconstrained) Optimization (757)
      • 22.1.1 Example 1: Minimizing a Univariate Function (Inverse-CDF) (758)
      • 22.1.2 Example 2: Minimizing a Bivariate Function (760)
      • 22.1.3 Example 3: Using Simulated Annealing to Find the Maximum of an Oscillatory Function (761)
    • 22.2 Constrained Optimization (762)
      • 22.2.1 Equality Constraints (762)
      • 22.2.2 Lagrange Multipliers (762)
      • 22.2.3 Inequality Constrained Optimization (763)
        • Linear Programming (LP) (763)
        • Mixed Integer Linear Programming (MILP) (768)
      • 22.2.4 Quadratic Programming (QP) (769)
    • 22.3 General Non-linear Optimization (770)
      • 22.3.1 Dual Problem Optimization (771)
        • Motivation (771)
        • Example 1: Linear Example (772)
        • Example 2: Quadratic Example (773)
        • Example 3: More Complex Non-linear Optimization (774)
        • Example 4: Another Linear Example (775)
    • 22.4 Manual Versus Automated Lagrange Multiplier Optimization (775)
    • 22.5 Data Denoising (778)
    • 22.6 Assignment: 22. Function Optimization (783)
      • 22.6.1 Unconstrained Optimization (783)
      • 22.6.2 Linear Programming (LP) (783)
      • 22.6.3 Mixed Integer Linear Programming (MILP) (784)
      • 22.6.4 Quadratic Programming (QP) (784)
      • 22.6.5 Complex Non-linear Optimization (784)
      • 22.6.6 Data Denoising (785)
    • References (785)
  • Chapter 23: Deep Learning, Neural Networks (786)
    • 23.1 Deep Learning Training (787)
      • 23.1.1 Perceptrons (787)
    • 23.2 Biological Relevance (789)
    • 23.3 Simple Neural Net Examples (791)
      • 23.3.1 Exclusive OR (XOR) Operator (791)
      • 23.3.2 NAND Operator (792)
      • 23.3.3 Complex Networks Designed Using Simple Building Blocks (793)
    • 23.4 Classification (794)
      • 23.4.1 Sonar Data Example (795)
      • 23.4.2 MXNet Notes (802)
    • 23.5 Case-Studies (803)
      • 23.5.1 ALS Regression Example (804)
      • 23.5.2 Spirals 2D Data (806)
      • 23.5.3 IBS Study (810)
      • 23.5.4 Country QoL Ranking Data (813)
      • 23.5.5 Handwritten Digits Classification (816)
        • Configuring the Neural Network (820)
        • Training (821)
        • Forecasting (821)
        • Examining the Network Structure Using LeNet (825)
    • 23.6 Classifying Real-World Images (827)
      • 23.6.1 Load the Pre-trained Model (827)
      • 23.6.2 Load, Preprocess and Classify New Images - US Weather Pattern (827)
      • 23.6.3 Lake Mapourika, New Zealand (831)
      • 23.6.4 Beach Image (832)
      • 23.6.5 Volcano (833)
      • 23.6.6 Brain Surface (835)
      • 23.6.7 Face Mask (836)
    • 23.7 Assignment: 23. Deep Learning, Neural Networks (837)
      • 23.7.1 Deep Learning Classification (837)
      • 23.7.2 Deep Learning Regression (838)
      • 23.7.3 Image Classification (838)
    • References (838)
  • Summary (839)
  • Glossary (842)
  • Index (844)
Loading...