Loading...
Search for: electrospuns
0.008 seconds
Total 57 records

    Preparation and characterization of PVDF/Starch nanocomposite nanofibers using electrospinning method

    , Article Materials Today: Proceedings, 2 May 2017 through 3 May 2017 ; Volume 5, Issue 7 , 2018 , Pages 15613-15619 ; 22147853 (ISSN) Amini, M ; Haddadi, A ; Ghaderi, S ; Ramazani, A ; Ansarizadeh, M. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, poly (vinylidene fluoride) PVDF/Starch nanofibers with a great potential for tissue engineering applications have been investigated. The electrospun nanofibers were formed by the electrospinning of the PVDF/Starch solutions in various ratios of PVDF to Starch. Characterizations of PVDF/Starch nanofiber were performed using rheometric mechanical spectroscopy (RMS), field emission scanning electron microscope (FE-SEM) and tensile test. The results showed that the addition of more Starch into the PVDF solution increased the viscosity of the prepared PVDF/Starch solutions. In addition, the mechanical properties of PVDF enhanced in the presence of Starch due to the higher... 

    Magnetic and electric field assisted electrospun polyamide nanofibers for on-line μ-solid phase extraction and HPLC

    , Article RSC Advances ; Vol. 4, Issue. 94 , 2014 , pp. 52590-52597 ; ISSN: 20462069 Bagheri, H ; Piri-Moghadam, H ; Rastegar, S ; Sharif University of Technology
    Abstract
    The effects of applied magnetic and electric fields on electrospinning were investigated to produce more efficient nanofibers. Considering the previous extensive studies, polyamide nanofibers were prepared by a conventional approach and under auxiliary electric and magnetic fields. The first sorbent was synthesized by electrospinning of a solution of 18% polyamide in formic acid. The second and third types of polyamide were prepared similarly while the electrospinning processes were assisted by an electric and a magnetic field. The third type of polyamide contained a magnetic ionic liquid (MIL) to induce sufficient magnetic susceptibility in the polymeric solution. The SEM images revealed... 

    Different types of electrospun nanofibers and their effect on microfluidic-based immunoassay

    , Article Polymers for Advanced Technologies ; Volume 30, Issue 4 , 2019 , Pages 973-982 ; 10427147 (ISSN) Mahmoudifard, M ; Vossoughi, M ; Soleimani, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Protein capturing on polymeric substrate of microfluidic devices is a key factor for the fabrication of immunoassay with high sensitivity. In this work, simple and versatile technique of electrospinning was used to produce electrospun nanofibrous membranes (e.NFMs) with high surface area as a substrate for microfluidic-based immunoassay to increase sensitivity. It was found that the simultaneous use of e.NFM and 1-Ethylethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-Hydroxysuccinimide hydroxysuccinimide as coupling agent has synergic effect on antigen immobilization onto the microchannels. It was found that the oxygen plasma technique for the creation of oxygen containing functional group... 

    Preparation of electrospun affinity membrane and cross flow system for dynamic removal of anionic dye from colored wastewater

    , Article Fibers and Polymers ; Volume 18, Issue 12 , 2017 , Pages 2387-2399 ; 12299197 (ISSN) Hosseini, S. A ; Vossoughi, M ; Mahmoodi, N. M ; Sharif University of Technology
    Abstract
    In this research, poly(vinyl alcohol) (PVA)/chitosan electrospun nanofibrous membrane (ENM) was prepared by electrospinning method in order to investigate its dye removal ability from colored wastewater. The morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy (SEM), image analysis and atomic force microscopy (AFM). The chemical characterization was studied by Fourier transform infrared spectroscopy (FTIR). The permeability of the membranes was evaluated by measuring pure water flux (PWF). In order to investigate the performance of the prepared membranes they were used in the batch adsorption and membrane separation for dye removal from... 

    Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles

    , Article Journal of Cleaner Production ; Volume 183 , 2018 , Pages 1197-1206 ; 09596526 (ISSN) Hosseini, A ; Vossoughi, M ; Mahmoodi, N. M ; Sadrzadeh, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, novel chitosan/poly(vinyl alcohol) (PVA)/SiO2 nanocomposite ENMs were prepared to improve the mechanical strength and permeation properties of ENMs. The effect of various concentrations of SiO2 in the spinning solution (0, 0.5, 1.0 and 2.0 wt %) on the morphology, fiber diameter, porosity, thermomechanical properties, and permeability of the synthesized membranes was investigated. The prepared affinity membranes were utilized for the removal of dye from colored wastewater. Incorporating SiO2, as a reinforcing agent, was found to increase the compaction resistance of the nanocomposite ENMs. With the addition of 0.5 wt % of SiO2, the Young's modulus of the prepared membranes... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    On-line SPE of Clodinafop Propargyl Traces from Aquatic Media Using Electrospun Polyamide Nanofibers Disks

    , M.Sc. Thesis Sharif University of Technology Asgari, Sara (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    An on-line solid phase extraction (SPE) method coupled with high performance liquid chromatography (HPLC) was developed using electrospun polyamide (PA) nanofibers as the extractin medium for trace determination of clodinafop propargyl herbicide in environmental aqueous samples. The sufficient numbers of disc sheets were cut from the electrospun PA mat and used as packing material in a cartridge. The homogeneity and the porosity of the prepared PA sheet were studied using the scanning electron microscopy (SEM) and the observed nanofiber diameters and lengths proved that the prepared sorbent possess a high aspect ratio. Major parameters affecting the extraction efficiency were optimized. The... 

    Mechanical Properties Enhancement of Hydrogel Scaffolds Using Combination of Electrospun Nanofibers

    , M.Sc. Thesis Sharif University of Technology Moghaddam Deymeh, Saeed (Author) ; Mashayekhan, Shohreh (Supervisor)
    Abstract
    Cardiovascular disease is responsible for a majority of health problem in developing countries. Heart diseases are the leading cause of death in the United State with approximately 40% of the death occurs by heart failures and coronary artery defects. Myocardial infarction is one of the diseases that occurs by coronay artery blockage. Cardiac tissue engineering (CTE) is an emerging field that holds great promise towards the development of innovative treatment strategies for heart disease. There are two common scaffolds for CTE, electrospun fiber mats and hydrogels. Although fibers are known as 3D environment for cells, they actually act as a 2D surface, because of lack of cell infilteration.... 

    Surface Modification of Bacterial Cellulose-Reinforced Keratin Nanofibers using Pluronic/Gum Tragacanth Hydrogel Nanoparticles Produced by Concurrent gel Electrospray/Polymer Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Azarniya, Amir (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor)
    Abstract
    In this work, wool keratin/polyethylene oxide (PEO) nanofibrous scaffolds were fabricated by electrospinning method. Bacterial cellulose nanofibrils (BCNFs) were embedded in the electrospun keratin/PEO nanofibers. Incorporation of BCNFs into the nanofibers enhances their hydrophilicity, mechanical properties and cell viability, adhesion and proliferation. Water contact angle of the nanofibers decreased from 126˚ to 83˚by addition of 1 wt % BCNFs. A thermogelling hydrogel based on carboxylated pluronic (Pl-COOH) and gum tragacanth (GT) was fabricated and polymer conjugation was confirmed by FTIR and H-NMR spectroscopy. Morphological and viscoelastic properties of GT-grafted Pl-COOH hydrogels... 

    Novel Approach Towards Mechanical and Thermal Resistant Capillary Microextraction by Sol-Gel Technique in On-Line Combination with High Performance Liquid Chromatography

    , Ph.D. Dissertation Sharif University of Technology Piri-Moghadam, Hamed (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    In this thesis, a new approach was developed to achieve mechanical and chemical resistant capillary microextraction (CME) in on-line combination with high performance liquid chromatography (HPLC) based on sol-gel technology. This thesis is divided into three chapters:
    First chapter contains of two parts. Overcoming the lack of mechanical stability of the substrate of CME by replacing the fused silica by copper tubings was the main objective of the first part. Self-assembled monolayers technique was employed to functionalize the copper tube followed by chemical bonding of the sorbent on the inner surface of the copper tube by sol-gel technology. The prepared copper tube containing the... 

    Kinetics and Mechanism of the Reduction of Hexavalent Chromium to Less Toxic Materials on ZnO Nanostructured Surfaces: the Effect of Wavelength and Light Intensity on the Reaction Rate

    , M.Sc. Thesis Sharif University of Technology Alyannezhadi, Mojtaba (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Ameneh (Supervisor)
    Abstract
    Hexavalent chromium ion (Cr+6) is a very toxic type of heavy metal in industrial effluents which is not biodegradable and accumulates in the human body that can cause genetic mutations and cancer. The aim of this project is to investigate the effect of wavelength and intensity of appropriate light on the reaction rate of photocatalytic reduction of Cr+6 ion to less toxic materials. In this project, we first designed and constructed a photocatalytic reactor to investigate the effect of wavelength and intensity of incident light on the reaction rate. The home-made photocatalytic reactor consisted of 120 LEDs in 12 different wavelengths, which has ability to control the intensity and... 

    Investigating morphology and performance of cellulose acetate butyrate electrospun nanofiber membranes for tomato industry wastewater treatment

    , Article Desalination and Water Treatment ; Volume 64 , 2017 , Pages 127-135 ; 19443994 (ISSN) Hosseini, S. A ; Soltanieh, M ; Mousavi, S. M ; Sharif University of Technology
    Desalination Publications  2017
    Abstract
    In this research, cellulose acetate butyrate (CAB) electrospun nanofiber membrane (ENM) was prepared by electrospinning method in order to separate the contaminants of an industrial wastewater. The influence of various electrospinning parameters on morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy and image analysis. The permeability of the membranes was evaluated by measuring pure water flux. In order to investigate the performance of the prepared membranes for tomato wastewater treatment, the rejection of the pollution indices and flux were determined. The results demonstrated the potential of using CAB nanofiber membrane for... 

    Electrospun nanofibers: A promising horizon toward the detection and treatment of cancer

    , Article Analyst ; Volume 145, Issue 8 , 2020 , Pages 2854-2872 Asghari, S ; Rezaei, Z ; Mahmoudifard, M ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Due to the increase in the number of cancer patients, because of environmental parameters, high stress, low immunity, etc., there is an urgent need to develop cost-effective sensors for early targeted detection of cancerous cells with adequate selectivity and efficiency. Early disease diagnosis is important, as it is necessary to start treatments before disease progression. On the other hand, we need new, more efficient cancer treatment approaches with minimized side effects, more biocompatibility, and easy disposal. Nanobiotechnology is a field that can assist in developing new diagnostic and treatment approaches, specifically in fatal cancers. Herein, a study on the different applications... 

    Study and Fabrication of a Multilayer Scaffold Containing Biological Agents for Skin Wounds Regeneration

    , Ph.D. Dissertation Sharif University of Technology Hajiabbas, Maryam (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manouchehr (Supervisor) ; Shamloo, Amir (Co-Supervisor)
    Abstract
    In recent years, it is expected that the fabrication of multilayer scaffolds and the use of different methodologies in one product can be a new progressing method in skin substitute production. Accordingly, this project aims to fabricate a bilayered composite scaffold with a combination of hydrogel and electrospinning method. We have tried to prepare a scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) without using corrosive solvents and toxic crosslinking agents as a scaffold and drug delivery system. As different biological, chemical, physical, and mechanical factors play a vital role in the healing process, we have characterized the proposed scaffold via DSC,... 

    Development of plasma and/or chemically induced graft co-polymerized electrospun poly(vinylidene fluoride) membranes for solute separation

    , Article Separation and Purification Technology ; Volume 108 , 2013 , Pages 196-204 ; 13835866 (ISSN) Savoji, H ; Rana, D ; Matsuura, T ; Tabe, S ; Feng, C ; Sharif University of Technology
    2013
    Abstract
    Nanofiber membranes were fabricated by electrospinning poly(vinylidene fluoride). The electrospun nanofiber membranes were further modified by grafting of acrylic acid (AA) and methacrylic acid (MAA) over the surfaces of the membranes. Plasma AA graft was attempted only, and the results indicated the partial membrane pore filling with grafted AA. For MAA grafting, chemically induced polymerization using benzoyl peroxide and hydrogen peroxide was attempted. The combination of plasma and chemically induced MAA graft polymerization was also attempted. The membranes were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and static contact angle (SCA)... 

    On the Importance of Noncrystalline Phases in Semicrystalline Electrospun Nanofibers

    , Article ACS Applied Polymer Materials ; Volume 3, Issue 12 , 2021 , Pages 6315-6325 ; 26376105 (ISSN) Soleimani, F ; Mazaheri, M ; Pellerin, C ; Bagheri, R ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Tailoring the properties of electrospun fibers requires a detailed understanding and control of their microstructure. We investigate the structure/property relationships in fabrics of randomly aligned fibers of polylactide, a prevalent biopolymer, either as-spun or after annealing and solvent-induced crystallization. In-depth characterization by field-emission scanning electron microscope (FESEM), wide-angle X-ray diffraction (WAXD), attenuated total reflection Fourier transform infrared (ATR-FTIR), and modulated temperature differential scanning calorimetry (MT-DSC) reveals that the as-spun fibers comprise crystalline and mesomorphic phases, as well as oriented but mobile amorphous chain... 

    Hybrid fibrous (PVDF-BaTiO3)/ PA-11 piezoelectric patch as an energy harvester for pacemakers

    , Article Journal of Industrial Textiles ; Volume 51, Issue 3_suppl , 2022 , Pages 4698S-4719S ; 15280837 (ISSN) Kabir, H ; Kamali Dehghan, H ; Mashayekhan, S ; Bagherzadeh, R ; Sorayani Bafqi, M. S ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Lithium batteries have been widely used to power up implantable medical devices such as pacemakers that are often designed to treat, diagnose, and prevent different diseases. However, due to their limited capacity and lifetime, patients have to undergo a surgical procedure to replace the discharged battery. Recently, nanogenerators have been emerged and are broadly accepted since they can convert tiny biomechanical forces, such as heartbeats, into electrical energy. This study aims to manufacture a biocompatible and high-performance piezoelectric energy harvester (PEH) that is capable to be charged by the energy received from the heartbeat and store the generated voltage. In this research, a... 

    Design, Simulation and Fabrication of Human Pulmonary Alveolus Model on a Microchip

    , Ph.D. Dissertation Sharif University of Technology Moghadas, Hajar (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Microfluidic systems create great development in diseases and drug delivery in various organs of the body. In this study, human pulmonary alveolar cell performance was evaluated from the perspective of the cell culture using a microfluidic system. For this purpose, numerical simulations of the microchip channels flow field are very important to select appropriate models. So in the first step, the flow field and particle deposition were simulated. Then an optimal model was selected based on key parameters such as cell feeding, shear stress exerted on the cell, particles distribution and also the limitations and possibilities for constructing. The numerical results show that the shear stress,... 

    Synthesis and in Vitro/in Vivo Evaluation of Bioprinted and Core-Shell Systems Containing Proteoglycan Nanoparticle and Growth Factor for Skin Tissue Regeneration

    , Ph.D. Dissertation Sharif University of Technology Zandi, Nooshin (Author) ; Simchi, Abdolreza (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor) ; Tamjid, Elnaz (Co-Supervisor)
    Abstract
    Tissue engineering has the potential to revolutionize our health care system. Conceptually, lost or malfunctioning tissues will be replaced by man-made biological substitutes to restore, maintain, or improve function. Tissue engineering has already shown great promise to contribute to treatments of a myriad of diseases including osteoarthritis, cancer, diabetes, skin burns, cardiovascular conditions and various traumatic injuries. Tissue engineering is a highly multidisciplinary discipline that demands integration of knowledge, tools and skills from biology, chemistry, engineering and medicine. Integrating nano- and microtechnologies into clinically sized implants represents a major... 

    Preparation of Electro Conductive-piezoelectric Nanocomposite for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Bagheri, Lida (Author) ; Ramazani, Ahmad (Supervisor) ; Nasrollahzadeh, Naser (Co-Supervisor)
    Abstract
    Articular cartilage resides in a complex and dynamic mechanical and biophysical environment in vivo. Chondrocyte physiology and biosynthetic activity is influenced by these signals, allowing them to modulate the structural organization and function of tissue at all stages, including development, growth and repair. . In articular cartilage, during physical activity and mechanical loading, electric signal have been observed in form of stress-generated electric potential following the movement of the positive mobile ions (in interstitial fluid) away from the fixed negative charges.Despite increasing evidence that mechanical and electrical stimuli have positive effects on chondrogenesis, to...