Loading...
Search for: six-degree-of-freedom
0.007 seconds
Total 37 records

    Analysis and Design of Controller and user Interface of a 6DOF Stewart Platform – based Hydraulic Motion Simulator for Heavy Payloads

    , M.Sc. Thesis Sharif University of Technology Heydari, Mohammad Hossein (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Motion simulators have been highly sought after by the growth of the aerospace industry. In the meantime, the Stewart mechanism, or the so-called Hexapads, is a robot that, in addition to being used in machining tools, is mainly used to simulate the flight. The robot is considering the project to test parts and equipment installed in marine vessels under sea movements and waves. Therefore, according to information obtained through real case studies, the purpose of this project is to design and implement a hexapad controller and user interface for samples weighing up to 2 tons which can handle linear accelerations up to 1 g, rotary accelerations up to 200 º / s2 performs at a frequency... 

    Dynamics, Control, and Design of the Structure of a 6DOF Stewart Platform – Based Hydraulic Motion Simulator for Heavy Payloads

    , M.Sc. Thesis Sharif University of Technology Soufi Enayati, Amir Mahdi (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    The robot considered in this project is to test parts and equipment installed in marine vessels under sea movements and waves. After a thorough assessment amongst common solutions to problems of this kind, a Stewart-Gough based manipulator has been chosen so that all the requirements could be satisfied. Therefore, according to the information obtained through relevant organisations, the purpose of this project is to work on dynamics, control, and design of the structure of a 6DOF Stewart platform – based hydraulic motion simulator for heavy payloads for samples weighing up to 2.5 tons which can handle linear accelerations up to 10 m/s2, rotary accelerations up to 150 º/s2 performing at a... 

    Dynamic Simulation of Underwater Vehicles

    , M.Sc. Thesis Sharif University of Technology Rahimian, Masoud (Author) ; Seif, Mohammad Saeed (Supervisor) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    In recent years, unmanned vehicles have intensively been developed to reduce human dangers for marine applications. Predicting the dynamic behaviour of an autonomous underwater vehicle is important during the vehicle’s design phase. In other words to design an AUV, one must clarify its maneuverability and controllability based on a mathematical model. The mathematical model contains various hydrodynamic forces and moments expressed collectively in terms of dynamic equations. Therefore, to optimizing the AUV design it is necessary to predict maneuvering abillity and dynamic behaviour of AUV. This can be able by computational simulation. SUT-2 is an AUV, being developed by Marine Engineering... 

    Underwater Hydrodynamics of Dolphin Craft

    , M.Sc. Thesis Sharif University of Technology Namdar, Hamid (Author) ; Sayadi, Hassan (Supervisor) ; Malaek, Mohammad Bagher (Supervisor)
    Abstract
    This dissertation accounts hydrodynamic coefficients for the hull form of Dolphine Craft using an Experimental-Numerical method. First, a short preface is mentionded about Dolphine craft and its charcterstics. Then, different methods for determining the hydrodynamic coeeficient are reviewed and the method used in this dissertation is introduced. After that, the selected methods will numerically be modeled. For accurate modeling, virtual labarotory is organizing for performing these tests During modeling, six degree freedom equation including the kinematic and Dynamics of body element are extractred and consequently, they are expressed for the rigid body and control volume of fluid. The... 

    Simultaneous Navigation and Attitude Determination of a Reentry Head Using Magnetometer, Sun Sensor, Star Tracker, INS and Unscented Kalman Filter

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Hamed (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Control and guidance of a vehicle is vital for it to do its mission correctly. Guidance system and decisional algorithms used in it need exact information of instantaneous position, velocity, and attitude of the guided vehicle to determine and issue proper guiding commands.
    Estimation algorithms and navigation sensors are two necessary tools for navigation. In the first section of present study, the reentry head equations of motion are derived and a 6-DOF simulation is done for it. In the second section, measurements of sensors will be simulated using results of the first section and existing reference models for sun position vector and earth magnetic field. The third section appertains... 

    Simultaneous Attitude and Orbit Determination Using Sensor Fusion Algorithm Based on the Dynamic of Satellite and Star Tracker

    , M.Sc. Thesis Sharif University of Technology Khalesi, Ruhollah (Author) ; Salarieh, Hassan (Supervisor)
    Abstract
    Control and guidance of a vehicle is vital for it to do its mission correctly. Guidance system and decisional algorithms used in it need exact information of instantaneous position, velocity, and attitude of the guided vehicle to determine and issue proper guiding commands.
    Estimation algorithms and navigation sensors are two necessary tools for navigation. In the first section of present study, the satellite equations of motion are derived and a 6-DOF simulation is done for it. In the second section, measurements of star tracker will be simulated using results of the first section. The third section appertains to development of navigation equations, attitude determination using UKF... 

    Analysis and Design of Controller and User Interface of a 6DOF Stewart Platform-Based Hydraulic Motion Simulator for Heavy Payloads

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Hadi (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Motion simulators have been highly sought after by the growth of the aerospace industry. In the meantime, the Stewart mechanism, or the so-called Hexapads, is a robot that, in addition to being used in machining tools, is mainly used to simulate the flight. The Stewart-Gaph mechanism was created and introduced in 1954 and 1965, and since then dynamics and control have been widely addressed in the mechanical engineering literature. The robot is considering the project to test parts and equipment installed in marine vessels under sea movements and waves. Therefore, according to information obtained through relevant organs, the purpose of this project is to design and implement a hexapad... 

    Re-entry Vehicle Control Algorithm Design Using Non-linear Dynamic Inversion

    , M.Sc. Thesis Sharif University of Technology Manafi, Mahdi (Author) ; Fathi, Mohsen (Supervisor) ; Assadian, Nima (Supervisor)
    Abstract
    This thesis is about guiding and controlling the six-degrees of freedom of the reentry vehicle with focus on designing controller by using non-linear dynamic inversion method. Intended reentry vehicle is Apollo which is a reentry capsule without wing and with lifted body and also the proportion of lift to drag is low. Guiding variable instruction, the angle of rolling and constant, are the side slip and attack which reentry vehicle must follow these instructions with the help of controller and with regard to the rotational dynamic of the vehicle. In this thesis more exact six-degrees-freedom model of the vehicle is extracted and the controlling system to
    stabilize and to follow guidance... 

    Design and Dynamics Control of Six Degree of Freedom Microrobot

    , M.Sc. Thesis Sharif University of Technology Motekallem, Abolfazl (Author) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    The field of microrobotics has seen tremendous advances in recent years. Potential high impact applications of untethered microrobots such as minimally invasive diagnosis and treatment inside the human body, biological studies or bioengineering, microfluidics, desktop micromanufacturing, and mobile sensor networks for environmental and health monitoring are reported. However, There are significant challenges in microrobotic technology, including energy resources, control systems, reliability and safety, design and manufacturing of micromotors and localization. In this work, overall size scale being micron scale is emphasized where mobile robots able to fit in spaces smaller than a millimeter... 

    Translational and Rotational Dynamics and Control Of an All-Thruster Satellite Considering Fuel Slosh

    , M.Sc. Thesis Sharif University of Technology Jalali Farahani, Mahan (Author) ; Assadian, Nima (Supervisor)
    Abstract
    The purpose of the present study is to model and control a 6DOF satellite dynamics with a rigid body in the Earth’s orbit including the fuel slosh. The satellite manages and controls its attitude and position by twelve ON-OFF thrusters installed alongside the principal body axes. Moreover, due to using the liquid fuel to feed these thrusters, fuel slosh may have a strong dynamical effect on the satellite translational and rotational dynamics and control. The thrusters’ activation may result in fuel slosh and the impact of their frequent switching ON-OFF on fuel is considered in this study. The thrusters force magnitude, switching intervals, and their frequencies can affect the magnitude of... 

    Fault-tolerant Control of Formation Flying Satellites Using Machine Learning

    , M.Sc. Thesis Sharif University of Technology Farhang Fallah, Raouf (Author) ; Assadian, Nima (Supervisor)
    Abstract
    In this thesis, a fault-tolerant method for controlling the relative position and attitude between two satellites in a leader and follower formation is proposed. The follower satellite is equipped with twelve thrusters which are installed on the satellite in a particular pattern. These thrusters are assumed to be afflicted by faults. The satellites are subject to external disturbances – such as the ellipsoidal gravity of Earth (J2), drag force, solar radiation pressure, and the third body, and a controller is designed to attain the desired formation under these disturbances.For this purpose, six separated neural networks are trained, one for each of the position or attitude channels. Since... 

    Modeling and Stability Analysis of a Monocopter at Fast Forward Flight

    , M.Sc. Thesis Sharif University of Technology Mahmudinia, Alireza (Author) ; Saghafi, Fariborz (Supervisor)
    Abstract
    Mono-copter has been considered as a type of drone in recent years. The initial idea for this micro vehicle was to follow the maple seed's motion as it fell from the tree. In this study, using dynamic modeling principles and with the help of aerodynamic relationships of non-permanent blade element as well as momentum theory, we present a dynamic model of forces and moments on this monocopter. Subsequently, using the Newton-Euler approach, the six-degree-of-freedom equations of motion of this are also developed and various simulations are performed on the model using software provided by Simulink Toolkit, which demonstrates the accuracy of the simulation. In addition, we obtain the different... 

    Moving target localization by cooperation of multiple flying vehicles

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 51, Issue 1 , April , 2015 , Pages 739-743 ; 00189251 (ISSN) Esmailifar, S ; Saghafi, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    An algorithm, by cooperation of multiple flying vehicles, is developed to localize a moving target in the presence of measurement noise and mis-modeling. It works based on jointly sharing information and data fusion by using a recursive Bayesian estimator and a searching guidance law to direct each flying vehicle to a position where the probability of target detection is maximum. To evaluate this algorithm, a high fidelity simulation program with six degrees of freedom dynamics is also developed  

    Enhancing the roll dynamics of an AUV by contra-rotating-propellers

    , Article Ships and Offshore Structures ; Volume 16, Issue 7 , 2021 , Pages 787-796 ; 17445302 (ISSN) Ebrahimi, M ; Kamali, A ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Roll control of the Autonomous Underwater Vehicles (AUVs) is a significant issue in the current field of research for many researchers in the subject of AUV control system designation. Especially at higher speeds, the roll angle generated by a single rotating propeller or other external disturbances can considerably influence the whole dynamics and therefore the operation of the vehicle. In this paper, the utilisation of a system of contra-rotating-propellers (CRP) to enhance the roll dynamics of an AUV is evaluated by developing a six-degrees-of-freedom (6DOF) dynamics and control systems’ simulator. The results show that: 1. The single propeller system can cause roll angle deflections... 

    Surge motion passive control of TLP with double horizontal tuned mass dampers

    , Article International Journal of Acoustics and Vibrations ; Volume 26, Issue 1 , 2021 , Pages 4-8 ; 10275851 (ISSN) Tabeshpour, M. R ; Malayjerdi, E ; Sharif University of Technology
    International Institute of Acoustics and Vibrations  2021
    Abstract
    The tension leg platform (TLP) is comprised of a buoyant hull that holds the platform’s topside. A group of tendons under the columns connect the TLP to the foundation. The TLP is displaced in six degrees of freedom due to environmental loads. Tendons moor the TLP in vertical direction (heave and pitch). Surge amplitude (horizontal displacement) of TLP is greater than other degrees of freedom. Also heave motion is coupled with surge one. Therefore, it is important to introduce and implement a method to control and reduce displacement of the TLP in horizontal direction. In this paper, a passive control system (double horizontal tuned mass damper (TMD)) is used to mitigate the surge motion of... 

    On the kinematic analysis of a spatial six-degree-of-freedom parallel manipulator

    , Article Scientia Iranica ; Volume 16, Issue 1 , 2009 , Pages 1-14 ; 10263098 (ISSN) Vakil, M ; Pendar, H ; Zohoor, H ; Sharif University of Technology
    2009
    Abstract
    In this paper, a novel spatial six-degree-of freedom parallel manipulator actuated by three base-mounted partial spherical actuators is studied. This new parallel manipulator consists of a base platform and a moving platform, which are connected by three legs. Each leg of the manipulator is composed of a spherical joint, prismatic joint and universal joint. The base-mounted partial spherical actuators can only specify the direction of their corresponding legs. In other words, the spin of each leg is a passive degree-of-freedom. The inverse pose and forward pose of the new mechanism are described. In the inverse pose kinematics, active joint variables are calculated with no need for... 

    Actuator Failure-Tolerant Predictive Control of an All-Thruster Satellite in Coupled Translational and Rotational Motion using Neural Networks

    , Ph.D. Dissertation Sharif University of Technology Tavakoli, Mohammad Mahdi (Author) ; Asadian, Nima (Supervisor)
    Abstract
    In this thesis, the problem of failure-tolerant control of the satellite in coupled orbital and rotational motion is investigated. All of the actuators of the satellite are thrusters and only the failure of the actuators is considered. At first, the equations of coupled relative translational-rotational motion of the satellite are derived. Then, the required specifications of the approapriate control method for the problem is explored with the conclution that the controller must be able to predict the behavior or planning the future trajectory of the satellite. In the next step, model predictive control, which has the required specifications, is used to control the coupled... 

    Flight Performance and Maneuverability Enhancement of a Twin Engine Fighter Aircraft Using Integrated Thrust-Vector and Aerodynamic controls

    , M.Sc. Thesis Sharif University of Technology Mazinani, Morteza (Author) ; Saghafi, Fariborz (Supervisor)
    Abstract
    In this thesis, maneuverability enhancement of a given twin engine fighter aircraft with integrated thrust-vector and conventional aerodynamic control surfaces havebeen studied. For this purpose a nonlinear 6DOF simulation program base on a near exact mathematical model has been prepared for the aircraft, and then a thrust vectoring system for producing moments about three body axes, like that used in F/A-18, has been added to the simulation. The control method that is employed to control the aircraft in simulation environment is based on Nonlinear Dynamic Inversion (NDI). Finally the Velocity Vector Roll (VVR) maneuver has been considered as an example tostudymaneuverability enhacement. It... 

    Three Dimensional Flight Control Design for an Aero-Elastic Flapping Vehicle

    , M.Sc. Thesis Sharif University of Technology Babaoghli, Fatemeh (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    This thesis is focused on development, modeling and simulation of a complete 6DOF elastic flapping air vehicle (FAV). In this respect the aerodynamic modeling is performed using a recent experimentally validated generalized modified strip theory (GMST) that considers the unsteady effect of wake and leading edge vortices via the Theodorsen function and Polhamus analogy respectively. The FAV wing structure is modeled using an elastic plate whose dynamic behavior is determined via a modal approach that is also verified with experimentation. The resulting novel integrated aerodynamic and structure (IAS) equations of motion are simulated for case study of FAV flight. Subsequently, since the IAS... 

    Vision-based navigation in autonomous close proximity operations using neural networks

    , Article IEEE Transactions on Aerospace and Electronic Systems ; Volume 47, Issue 2 , April , 2011 , Pages 864-883 ; 00189251 (ISSN) Khansari Zadeh, S. M ; Saghafi, F ; Sharif University of Technology
    Abstract
    Tight unmanned aerial vehicle (UAV) autonomous missions such as formation flight (FF) and aerial refueling (AR) require an active controller that works in conjunction with a precise sensor that is able to identify an in-front aircraft and to estimate its relative position and orientation. Among possible choices vision sensors are of interest because they are passive in nature and do not require the cooperation of the in-front aircraft in any way. In this paper new vision-based estimation and navigation algorithms based on neural networks is developed. The accuracy and robustness of the proposed algorithm have been validated via a detailed modeling and a complete virtual environment based on...